Skip to content
Snippets Groups Projects
Commit cb7ee7d5 authored by Olivier BICHLER's avatar Olivier BICHLER
Browse files

Merge branch 'fix_operators' into 'dev'

fix failed onnx tests

See merge request !311
parents 6de11c4b 49f938e9
No related branches found
No related tags found
2 merge requests!341Error,!311fix failed onnx tests
Pipeline #65693 passed
Showing
with 715 additions and 102 deletions
......@@ -47,6 +47,7 @@
#include "aidge/operator/Conv.hpp"
#include "aidge/operator/ConvDepthWise.hpp"
#include "aidge/operator/Div.hpp"
#include "aidge/operator/Equal.hpp"
#include "aidge/operator/Erf.hpp"
#include "aidge/operator/FC.hpp"
#include "aidge/operator/Gather.hpp"
......
......@@ -33,12 +33,21 @@ enum class AvgPoolingAttr {
* Specifies the step size of the sliding window along each spatial dimension.
*/
StrideDims,
/**
* @brief Dilation along each spatial axis. Default value is 1.
*/
Dilations,
/**
* @brief Kernel dimensions for the pooling operation.
* Specifies the size of the pooling window along each spatial dimension.
*/
KernelDims
KernelDims,
/**
* @brief Flag indicating whether to use ceil or floor when calculating output size.
* - `true`: Use `ceil` for output size calculation.
* - `false`: Use `floor` for output size calculation.
*/
CeilMode
};
/**
......@@ -46,11 +55,30 @@ enum class AvgPoolingAttr {
*
* The AvgPooling operation computes the average value within sliding windows of specified size
* (kernel dimensions) over the input tensor. The stride dimensions determine how the window
* moves across the input. This operation is commonly used in neural networks to reduce the spatial
* dimensions while preserving features.
* moves across the input. The dilation parameter allows spacing between kernel elements, and
* `ceil_mode` determines whether to use ceiling instead of floor when computing the output shape.
* This operation is commonly used in neural networks to reduce spatial dimensions while preserving features.
*
* @tparam DIM Number of dimensions for the pooling operation.
*
* ### Output Shape Calculation
* - If `ceil_mode` is false:
* `output_size = floor((input_size - dilation * (kernel_size - 1) - 1) / stride + 1)`
* - If `ceil_mode` is true:
* `output_size = ceil((input_size - dilation * (kernel_size - 1) - 1) / stride + 1)`
*
* @example Example usage:
* - Input shape: (1, 3, 32, 32) // Batch size 1, 3 channels, 32x32 spatial dimensions
* - KernelDims: (2, 2)
* - StrideDims: (2, 2)
* - Dilation: (1, 1)
* - CeilMode: false
* - Output shape: (1, 3, 16, 16)
*
* @see OperatorTensor
* @see Registrable
*/
template <DimIdx_t DIM>
class AvgPooling_Op : public OperatorTensor,
public Registrable<AvgPooling_Op<DIM>, std::string, std::function<std::shared_ptr<OperatorImpl>(const AvgPooling_Op<DIM> &)>> {
......@@ -67,7 +95,9 @@ private:
*/
using Attributes_ = StaticAttributes<AvgPoolingAttr,
std::array<DimSize_t, DIM>,
std::array<DimSize_t, DIM>>;
std::array<DimSize_t, DIM>,
std::array<DimSize_t, DIM>,
bool>;
template <AvgPoolingAttr e>
using attr = typename Attributes_::template attr<e>;
......@@ -84,21 +114,27 @@ public:
/**
* @brief Constructs an AvgPooling operation with specified kernel and stride dimensions.
* @param kernel_dims Size of the pooling window for each spatial dimension.
* @param stride_dims Step size (stride) for sliding the pooling window across the input dimensions.
* @param[in] kernel_dims Size of the pooling window for each spatial dimension.
* @param[in] stride_dims Step size (stride) for sliding the pooling window across the input dimensions.
* Defaults to 1 for each dimension.
* @param[in] dilations Spatial dilations for the pooling operation.
* @param[in] ceil_mode Indicates whether to use ceil mode for output size calculation.
*/
constexpr AvgPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims,
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t, DIM>(1))
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t, DIM>(1),
const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t, DIM>(1),
bool ceil_mode = false)
: OperatorTensor(Type, {InputCategory::Data}, 1),
mAttributes(std::make_shared<Attributes_>(
attr<AvgPoolingAttr::StrideDims>(stride_dims),
attr<AvgPoolingAttr::KernelDims>(kernel_dims)))
attr<AvgPoolingAttr::KernelDims>(kernel_dims),
attr<AvgPoolingAttr::Dilations>(dilations),
attr<AvgPoolingAttr::CeilMode>(ceil_mode)))
{}
/**
* @brief Copy-constructor.
* @param op AvgPooling_Op to copy.
* @param[in] op AvgPooling_Op to copy.
* @details Copies the operator attributes and its output tensor(s), but not
* its input tensors. The new operator has no associated input.
*/
......@@ -112,16 +148,16 @@ public:
/**
* @brief Calculates the output dimensions based on the input dimensions and operator attributes.
* @param allowDataDependency If true, considers data-dependent operations. Defaults to false.
* @param[in] allowDataDependency If true, considers data-dependent operations. Defaults to false.
* @return True if the dimensions are successfully calculated.
*/
bool forwardDims(bool /*allowDataDependency*/ = false) override final;
/**
* @brief Computes the receptive field of the operator.
* @param firstEltDims Dimensions of the first element.
* @param outputDims Dimensions of the output tensor.
* @param outputIdx Index of the output tensor. Defaults to 0.
* @param[in] firstEltDims Dimensions of the first element.
* @param[in] outputDims Dimensions of the output tensor.
* @param[in] outputIdx Index of the output tensor. Defaults to 0.
* @return A vector of pairs representing the receptive fields.
*/
std::vector<std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>>
......@@ -131,8 +167,8 @@ public:
/**
* @brief Sets the backend for the operation.
* @param name Name of the backend.
* @param device Device index. Defaults to 0.
* @param[in] name Name of the backend.
* @param[in] device Device index. Defaults to 0.
*/
void setBackend(const std::string &name, DeviceIdx_t device = 0) override final;
......@@ -155,11 +191,23 @@ public:
inline std::array<DimSize_t, DIM>& strideDims() const { return mAttributes->template getAttr<AvgPoolingAttr::StrideDims>(); }
/**
* @brief Accessor for the kernel dimensions.
* @return An array representing the kernel dimensions.
* @brief Accessor for dilations.
* @return An array representing spatial dilations.
*/
inline std::array<DimSize_t, DIM>& dilations() const { return mAttributes->template getAttr<AvgPoolingAttr::Dilations>(); }
/**
* @brief Accessor for kernel dimensions.
* @return An array representing kernel dimensions.
*/
inline std::array<DimSize_t, DIM>& kernelDims() const { return mAttributes->template getAttr<AvgPoolingAttr::KernelDims>(); }
/**
* @brief Accessor for ceil mode flag.
* @return Boolean value indicating whether ceil mode is enabled.
*/
inline bool& ceilMode() const { return mAttributes->template getAttr<AvgPoolingAttr::CeilMode>(); }
/**
* @brief Retrieves the names of the input tensors.
* @return A vector of strings representing the input tensors names.
......@@ -180,31 +228,39 @@ public:
/**
* @brief Creates an AvgPooling operator node.
* @tparam DIM Number of dimensions for the pooling operation.
* @param kernel_dims Size of the pooling window for each spatial dimension.
* @param name Name of the operator node. Defaults to an empty string.
* @param stride_dims Step size (stride) for sliding the pooling window across the input dimensions. Defaults to 1 for each dimension.
* @param[in] kernel_dims Size of the pooling window for each spatial dimension.
* @param[in] name Name of the operator node. Defaults to an empty string.
* @param[in] stride_dims Step size (stride) for sliding the pooling window across the input dimensions. Defaults to 1 for each dimension.
* @param[in] dilations Spatial dilations for the pooling operation.
* @param[in] ceil_mode Indicates whether to use ceil mode for output size calculation.
* @return A shared pointer to the created operator node.
*/
template <std::array<DimSize_t, 1>::size_type DIM>
std::shared_ptr<Node> AvgPooling(const std::array<DimSize_t, DIM> &kernel_dims,
const std::string& name = "",
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1));
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1),
bool ceil_mode=false);
/**
* @brief Overload of AvgPooling for C-style arrays.
* @tparam DIM Number of dimensions for the pooling operation.
* @param kernel_dims C-style array specifying the kernel dimensions.
* @param name Name of the operator node. Defaults to an empty string.
* @param stride_dims Step size (stride) for sliding the pooling window across the input dimensions. Defaults to 1 for each dimension.
* @param[in] kernel_dims C-style array specifying the kernel dimensions.
* @param[in] name Name of the operator node. Defaults to an empty string.
* @param[in] stride_dims Step size (stride) for sliding the pooling window across the input dimensions. Defaults to 1 for each dimension.
* @param[in] dilations Spatial dilations for the pooling operation.
* @param[in] ceil_mode Indicates whether to use ceil mode for output size calculation.
* @return A shared pointer to the created operator node.
*/
template <DimSize_t DIM>
inline std::shared_ptr<Node> AvgPooling(
DimSize_t const (&kernel_dims)[DIM],
const std::string& name = "",
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1)) {
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1),
bool ceil_mode=false) {
static_assert(DIM<=MaxDim,"Too many kernel dimensions required by AvgPooling, not supported");
return AvgPooling(to_array(kernel_dims), name, stride_dims);
return AvgPooling(to_array(kernel_dims), name, stride_dims, dilations, ceil_mode);
}
} // namespace Aidge
......@@ -221,10 +277,7 @@ namespace {
* @brief String representation of the AvgPooling attributes.
*/
template <>
const char *const EnumStrings<Aidge::AvgPoolingAttr>::data[] = {
"stride_dims",
"kernel_dims"
};
const char *const EnumStrings<Aidge::AvgPoolingAttr>::data[] = { "stride_dims", "kernel_dims", "dilations", "ceil_mode" };
}
#endif /* AIDGE_CORE_OPERATOR_AVGPOOLING_H_ */
/********************************************************************************
* Copyright (c) 2024 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CORE_OPERATOR_EQUAL_H_
#define AIDGE_CORE_OPERATOR_EQUAL_H_
#include <memory>
#include <string>
#include <vector>
#include "aidge/utils/Registrar.hpp"
#include "aidge/operator/OperatorTensor.hpp"
#include "aidge/backend/OperatorImpl.hpp"
#include "aidge/graph/Node.hpp"
#include "aidge/utils/Types.h"
namespace Aidge {
/**
* @brief Tensor element-wise logical equal operation.
*/
class Equal_Op : public OperatorTensor,
public Registrable<Equal_Op, std::string, std::function<std::shared_ptr<OperatorImpl>(const Equal_Op&)>> {
public:
static const std::string Type;
/**
* @brief Compute element-wise Equal operation on two given inputs.
* @details supports broadcasting of both operands.
*/
Equal_Op() : OperatorTensor(Type, {InputCategory::Data, InputCategory::Data}, 1) {}
/**
* @brief Copy-constructor. Copy the operator attributes and its output tensor(s),
* but not its input tensors (the new operator has no input associated).
* @param op Operator to copy.
*/
Equal_Op(const Equal_Op& op)
: OperatorTensor(op)
{
if (op.mImpl) {
SET_IMPL_MACRO(Equal_Op, *this, op.backend());
} else {
mImpl = nullptr;
}
}
/**
* @brief Clone the operator using its copy-constructor.
* @see Operator::Equal_Op
*/
std::shared_ptr<Operator> clone() const override {
return std::make_shared<Equal_Op>(*this);
}
bool forwardDims(bool allowDataDependency = false) override final;
void setBackend(const std::string& name, DeviceIdx_t device = 0) override;
std::set<std::string> getAvailableBackends() const override;
static const std::vector<std::string> getInputsName(){
return {"data_input_1", "data_input_2"};
}
static const std::vector<std::string> getOutputsName(){
return {"data_output"};
}
};
inline std::shared_ptr<Node> Equal(const std::string& name = "") {
return std::make_shared<Node>(std::make_shared<Equal_Op>(), name);
}
} // namespace Aidge
#endif /* AIDGE_CORE_OPERATOR_EQUAL_H_ */
......@@ -41,7 +41,10 @@ enum class MaxPoolingAttr {
* Must be positive integers.
*/
StrideDims,
/**
* @brief Dilation along each spatial axis. Default value is 1.
*/
Dilations,
/**
* @brief Kernel dimensions specifying the size of the pooling window for each spatial dimension.
* For example, common kernel dimensions include 2x2 or 3x3.
......@@ -63,24 +66,28 @@ enum class MaxPoolingAttr {
* @brief Implements the MaxPooling operation over a specified input tensor.
*
* MaxPooling reduces spatial dimensions by applying a max filter over a sliding window.
* The resulting output tensor contains the maximum value within each window.
* The stride dimensions determine how the window moves across the input. The dilation
* parameter allows spacing between kernel elements, and `ceil_mode` determines whether
* to use ceiling instead of floor when computing the output shape.
*
* ### Output Shape Calculation
* - If `CeilMode` is false:
* `output_size = floor((input_size - kernel_size) / stride + 1)`
* - If `CeilMode` is true:
* `output_size = ceil((input_size - kernel_size) / stride + 1)`
* - If `ceil_mode` is false:
* `output_size = floor((input_size - dilation * (kernel_size - 1) - 1) / stride + 1)`
* - If `ceil_mode` is true:
* `output_size = ceil((input_size - dilation * (kernel_size - 1) - 1) / stride + 1)`
*
* @example Example usage:
* - Input shape: (1, 3, 32, 32) // Batch size 1, 3 channels, 32x32 spatial dimensions
* - KernelDims: (2, 2)
* - StrideDims: (2, 2)
* - Dilation: (1, 1)
* - CeilMode: false
* - Output shape: (1, 3, 16, 16)
*
* @see OperatorTensor
* @see Registrable
*/
template <DimIdx_t DIM>
class MaxPooling_Op : public OperatorTensor,
public Registrable<MaxPooling_Op<DIM>,
......@@ -91,6 +98,7 @@ public:
static const std::string Type; ///< Static identifier for this operator type.
using Attributes_ = StaticAttributes<MaxPoolingAttr,
std::array<DimSize_t, DIM>,
std::array<DimSize_t, DIM>,
std::array<DimSize_t, DIM>,
bool>;
......@@ -107,15 +115,17 @@ public:
* @brief Constructor.
* @param[in] kernel_dims Size of the pooling window for each spatial dimension.
* @param[in] stride_dims Step size (stride) for sliding the pooling window across input dimensions.
* @param[in] dilations Spatial dilations for the pooling operation.
* @param[in] ceil_mode Indicates whether to use ceil or floor for output size calculation.
*/
MaxPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims,
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t, DIM>(1),
bool ceil_mode = false);
/**
* @brief Copy-constructor.
* @param op MaxPooling_Op to copy.
* @param[in] op MaxPooling_Op to copy.
* @details Copies the operator attributes and its output tensor(s), but not
* its input tensors. The new operator has no associated input.
*/
......@@ -159,6 +169,12 @@ public:
*/
inline std::array<DimSize_t, DIM>& strideDims() const { return mAttributes->template getAttr<MaxPoolingAttr::StrideDims>(); }
/**
* @brief Accessor for dilations.
* @return An array representing spatial dilations.
*/
inline std::array<DimSize_t, DIM>& dilations() const { return mAttributes->template getAttr<MaxPoolingAttr::Dilations>(); }
/**
* @brief Accessor for kernel dimensions.
* @return An array representing kernel dimensions.
......@@ -197,6 +213,7 @@ extern template class Aidge::MaxPooling_Op<3>;
* @param[in] kernel_dims Kernel dimensions specifying the size of the pooling window.
* @param[in] name Optional name for the operation.
* @param[in] stride_dims Stride dimensions specifying the step size for the pooling window.
* @param[in] dilations Spatial dilations for the pooling operation.
* @param[in] ceil_mode Indicates whether to use ceil mode for output size calculation.
* @return A shared pointer to a Node representing the MaxPooling operation.
*/
......@@ -204,6 +221,7 @@ template <std::array<DimSize_t, 1>::size_type DIM>
std::shared_ptr<Node> MaxPooling(const std::array<DimSize_t, DIM> &kernel_dims,
const std::string& name = "",
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1),
bool ceil_mode=false);
/**
......@@ -212,6 +230,7 @@ std::shared_ptr<Node> MaxPooling(const std::array<DimSize_t, DIM> &kernel_dims,
* @param[in] kernel_dims C-style array of kernel dimensions.
* @param[in] name Optional name for the operation.
* @param[in] stride_dims Stride dimensions specifying the step size for the pooling window.
* @param[in] dilations Spatial dilations for the pooling operation.
* @param[in] ceil_mode Indicates whether to use ceil mode for output size calculation.
* @return A shared pointer to a Node representing the MaxPooling operation.
*/
......@@ -220,9 +239,10 @@ inline std::shared_ptr<Node> MaxPooling(
DimSize_t const (&kernel_dims)[DIM],
const std::string& name = "",
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1),
bool ceil_mode = false) {
static_assert(DIM<=MaxDim,"Too many kernel dimensions required by MaxPooling, not supported");
return MaxPooling(to_array(kernel_dims), name, stride_dims, ceil_mode);
return MaxPooling(to_array(kernel_dims), name, stride_dims, dilations, ceil_mode);
}
} // namespace Aidge
......@@ -232,7 +252,7 @@ namespace {
* @brief String representations of MaxPooling attributes for debugging and logging.
*/
template <>
const char *const EnumStrings<Aidge::MaxPoolingAttr>::data[] = {"stride_dims", "kernel_dims", "ceil_mode"};
const char *const EnumStrings<Aidge::MaxPoolingAttr>::data[] = {"stride_dims", "kernel_dims", "dilations", "ceil_mode"};
}
#endif /* AIDGE_CORE_OPERATOR_MAXPOOLING_H_ */
......@@ -164,14 +164,18 @@ PaddedConvDepthWise(const DimSize_t nb_channels,
* @param[in] kernel_dims The dimensions of the pooling window.
* @param[in] name Optional name for the operation.
* @param[in] stride_dims The stride dimensions for pooling (default is 1).
* @param[in] dilations The spatial dilations for pooling (default is 1).
* @param[in] padding_dims Padding dimensions before pooling (default is 0).
* @param[in] ceil_mode Whether to use ceiling mode for pooling (default is false).
* @return A shared pointer to the Node representing the padded average pooling operation.
*/
template <std::array<DimSize_t, 1>::size_type DIM>
extern std::shared_ptr<Node> PaddedAvgPooling(const std::array<DimSize_t, DIM> &kernel_dims,
const std::string& name = "",
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0));
const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0),
bool ceil_mode = false);
/**
* @brief Creates a padded average pooling operation as a MetaOperator.
......@@ -180,13 +184,17 @@ extern std::shared_ptr<Node> PaddedAvgPooling(const std::array<DimSize_t, DIM> &
*
* @param[in] kernel_dims The dimensions of the pooling window.
* @param[in] stride_dims The stride dimensions for pooling (default is 1).
* @param[in] dilations The spatial dilations for pooling (default is 1).
* @param[in] padding_dims Padding dimensions before pooling (default is 0).
* @param[in] ceil_mode Whether to use ceiling mode for pooling (default is false).
* @return A shared pointer to the MetaOperator_Op representing the padded average pooling operation.
*/
template <std::array<DimSize_t, 1>::size_type DIM>
extern std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims,
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0));
const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0),
bool ceil_mode = false);
// Helper function for average pooling with C-style array for kernel_dims, enabling automatic DIM deduction.
template <DimSize_t DIM>
......@@ -195,8 +203,11 @@ PaddedAvgPooling(DimSize_t const (&kernel_dims)[DIM],
const std::string &name = "",
const std::array<DimSize_t, DIM> &stride_dims =
create_array<DimSize_t, DIM>(1),
const std::array<DimSize_t, DIM> &dilations =
create_array<DimSize_t, DIM>(1),
const std::array<DimSize_t, 2 * DIM> &padding_dims =
create_array<DimSize_t, 2 * DIM>(0));
create_array<DimSize_t, 2 * DIM>(0),
bool ceil_mode = false);
////////////////////////////////////////////////////////////////////////////////
......@@ -208,6 +219,7 @@ PaddedAvgPooling(DimSize_t const (&kernel_dims)[DIM],
* @param[in] kernel_dims The dimensions of the pooling window.
* @param[in] name Optional name for the operation.
* @param[in] stride_dims The stride dimensions for pooling (default is 1).
* @param[in] dilations The spatial dilations for pooling (default is 1).
* @param[in] padding_dims Padding dimensions before pooling (default is 0).
* @param[in] ceil_mode Whether to use ceiling mode for pooling (default is false).
* @return A shared pointer to the Node representing the padded max pooling operation.
......@@ -216,11 +228,12 @@ template <std::array<DimSize_t, 1>::size_type DIM>
inline std::shared_ptr<Node> PaddedMaxPooling(const std::array<DimSize_t, DIM> &kernel_dims,
const std::string& name = "",
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0),
bool ceil_mode = false) {
auto graph = Sequential({
Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : ""),
MaxPooling(kernel_dims, (!name.empty()) ? name + "_maxpooling" : "", stride_dims, ceil_mode)
MaxPooling(kernel_dims, (!name.empty()) ? name + "_maxpooling" : "", stride_dims, dilations, ceil_mode)
});
return MetaOperator(("PaddedMaxPooling" + std::to_string(DIM) + "D").c_str(), graph, {}, name);
......@@ -233,6 +246,7 @@ inline std::shared_ptr<Node> PaddedMaxPooling(const std::array<DimSize_t, DIM> &
*
* @param[in] kernel_dims The dimensions of the pooling window.
* @param[in] stride_dims The stride dimensions for pooling (default is 1).
* @param[in] dilations The spatial dilations for pooling (default is 1).
* @param[in] padding_dims Padding dimensions before pooling (default is 0).
* @param[in] ceil_mode Whether to use ceiling mode for pooling (default is false).
* @return A shared pointer to the MetaOperator_Op representing the padded max pooling operation.
......@@ -240,11 +254,12 @@ inline std::shared_ptr<Node> PaddedMaxPooling(const std::array<DimSize_t, DIM> &
template <std::array<DimSize_t, 1>::size_type DIM>
inline std::shared_ptr<MetaOperator_Op> PaddedMaxPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims,
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0),
bool ceil_mode = false) {
auto graph = Sequential({
Pad<DIM>(padding_dims, ""),
MaxPooling(kernel_dims, "", stride_dims, ceil_mode)
MaxPooling(kernel_dims, "", stride_dims, dilations, ceil_mode)
});
return std::make_shared<MetaOperator_Op>(("PaddedMaxPooling" + std::to_string(DIM) + "D").c_str(), graph);
}
......@@ -255,9 +270,10 @@ inline std::shared_ptr<Node> PaddedMaxPooling(
DimSize_t const (&kernel_dims)[DIM],
const std::string& name = "",
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0),
bool ceil_mode= false) {
return PaddedMaxPooling(to_array(kernel_dims), name, stride_dims, padding_dims, ceil_mode);
return PaddedMaxPooling(to_array(kernel_dims), name, stride_dims, dilations, padding_dims, ceil_mode);
}
/**
......
......@@ -47,11 +47,19 @@ template <DimIdx_t DIM> void declare_AvgPoolingOp(py::module &m) {
:param stride_dims: The stride of the pooling operation. Specifies how much the kernel moves in each step.
By default, the stride is set to 1 for all dimensions.
:type stride_dims: List[int], optional
:param dilations: The dilation value along each spatial axis of filter.
:type dilations: List[int], optional
:param ceil_mode: Whether to use ceil or floor when calculating the output dimensions.
:type ceil_mode: bool, optional
)mydelimiter")
.def(py::init<const std::array<DimSize_t, DIM> &,
const std::array<DimSize_t, DIM> &>(),
const std::array<DimSize_t, DIM> &,
const std::array<DimSize_t, DIM> &,
bool>(),
py::arg("kernel_dims"),
py::arg("stride_dims") = create_array<DimSize_t, DIM>(1))
py::arg("stride_dims") = create_array<DimSize_t, DIM>(1),
py::arg("dilations") = create_array<DimSize_t, DIM>(1),
py::arg("ceil_mode") = false)
.def("get_inputs_name", &AvgPooling_Op<DIM>::getInputsName)
.def("get_outputs_name", &AvgPooling_Op<DIM>::getOutputsName)
.def_readonly_static("Type", &AvgPooling_Op<DIM>::Type);
......@@ -60,14 +68,19 @@ template <DimIdx_t DIM> void declare_AvgPoolingOp(py::module &m) {
m.def(("AvgPooling" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims,
const std::string& name,
const std::vector<DimSize_t>& stride_dims) {
const std::vector<DimSize_t>& stride_dims,
const std::vector<DimSize_t>& dilations,
bool ceil_mode) {
AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM);
AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM);
AIDGE_ASSERT(dilations.size() == DIM, "dilations size [{}] does not match DIM [{}]", dilations.size(), DIM);
return AvgPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()));
return AvgPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilations.begin()), ceil_mode);
}, py::arg("kernel_dims"),
py::arg("name") = "",
py::arg("stride_dims") = std::vector<DimSize_t>(DIM, 1),
py::arg("dilations") = std::vector<DimSize_t>(DIM, 1),
py::arg("ceil_mode") = false,
R"mydelimiter(
Initialize a node containing an AvgPooling operator.
......@@ -75,6 +88,10 @@ template <DimIdx_t DIM> void declare_AvgPoolingOp(py::module &m) {
:param kernel_dims: Size of the kernel applied during pooling.
:type kernel_dims: List[int]
:param dilations: The dilation value along each spatial axis of filter.
:type dilations: List[int]
:param ceil_mode: Whether to use ceil or floor when calculating the output dimensions.
:type ceil_mode: bool
:param name: Name of the operator node (optional).
:type name: str
:param stride_dims: Stride dimensions for the pooling operation.
......
/********************************************************************************
* Copyright (c) 2024 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <pybind11/pybind11.h>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/Equal.hpp"
#include "aidge/operator/OperatorTensor.hpp"
namespace py = pybind11;
namespace Aidge {
void init_Equal(py::module& m) {
py::class_<Equal_Op, std::shared_ptr<Equal_Op>, OperatorTensor>(m, "Equal_Op", py::multiple_inheritance(),
R"mydelimiter( Initialize an Equal operator.)mydelimiter")
.def(py::init<>())
.def_static("get_inputs_name", &Equal_Op::getInputsName)
.def_static("get_outputs_name", &Equal_Op::getOutputsName);
declare_registrable<Equal_Op>(m, "EqualOp");
m.def("Equal", &Equal, py::arg("name") = "",
R"mydelimiter(
Initialize a node containing an Equal operator.
:param name : name of the node.
)mydelimiter");
}
} // namespace Aidge
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <memory>
#include <pybind11/pybind11.h>
#include <string>
#include <vector>
#include "aidge/operator/OperatorTensor.hpp"
#include "aidge/operator/Flatten.hpp"
#include "aidge/utils/Attributes.hpp"
#include "aidge/utils/Types.h"
namespace py = pybind11;
namespace Aidge {
void init_Flatten(py::module &m) {
py::class_<Flatten_Op, std::shared_ptr<Flatten_Op>, OperatorTensor>(
m, "FlattenOp", py::multiple_inheritance(),
R"mydelimiter(
Initialize flatten operator
:param axis : up to which input dimensions (exclusive) should be flattened to the outer dimension of the output
between [-r;r-1] with r = input_tensor.nbDims()
:type axes : :py:class: List[Int]
)mydelimiter")
.def("get_inputs_name", &Flatten_Op::getInputsName)
.def("get_outputs_name", &Flatten_Op::getOutputsName)
.def("axis", &Flatten_Op::axis);
// Here we bind the constructor of the Flatten Node. We add an argument
// for each attribute of the operator (in here we only have 'axis') and
// the last argument is the node's name.
m.def("Flatten", &Flatten, py::arg("axis") = 1,
py::arg("name") = "",
R"mydelimiter(
Initialize a node containing a flatten operator.
:param axis : up to which input dimensions (exclusive) should be flattened to the outer dimension of the output
between [-r;r-1] with r = input_tensor.nbDims()
:type axes : :py:class: List[Int]
:param name : name of the node.
)mydelimiter");
}
} // namespace Aidge
......@@ -37,14 +37,18 @@ template <DimIdx_t DIM> void declare_MaxPoolingOp(py::module &m) {
:type kernel_dims: List[int]
:param stride_dims: The stride (step size) to move the kernel over the input.
:type stride_dims: List[int]
:param dilations: The dilation value along each spatial axis of filter.
:type dilations: List[int]
:param ceil_mode: Whether to use ceil or floor when calculating the output dimensions.
:type ceil_mode: bool
)mydelimiter")
.def(py::init<const std::array<DimSize_t, DIM> &,
const std::array<DimSize_t, DIM> &,
const std::array<DimSize_t, DIM> &,
bool>(),
py::arg("kernel_dims"),
py::arg("stride_dims"),
py::arg("dilations"),
py::arg("ceil_mode"))
.def_static("get_inputs_name", &MaxPooling_Op<DIM>::getInputsName)
.def_static("get_outputs_name", &MaxPooling_Op<DIM>::getOutputsName)
......@@ -55,14 +59,17 @@ template <DimIdx_t DIM> void declare_MaxPoolingOp(py::module &m) {
m.def(("MaxPooling" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims,
const std::string& name,
const std::vector<DimSize_t> &stride_dims,
const std::vector<DimSize_t> &dilations,
bool ceil_mode) {
AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM);
AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM);
AIDGE_ASSERT(dilations.size() == DIM, "dilations size [{}] does not match DIM [{}]", dilations.size(), DIM);
return MaxPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), ceil_mode);
return MaxPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilations.begin()), ceil_mode);
}, py::arg("kernel_dims"),
py::arg("name") = "",
py::arg("stride_dims") = std::vector<DimSize_t>(DIM, 1),
py::arg("dilations") = std::vector<DimSize_t>(DIM, 1),
py::arg("ceil_mode") = false,
R"mydelimiter(
Initialize a node containing a MaxPooling operator.
......@@ -75,6 +82,8 @@ template <DimIdx_t DIM> void declare_MaxPoolingOp(py::module &m) {
:type kernel_dims: List[int]
:param stride_dims: The stride (step size) to move the kernel over the input.
:type stride_dims: List[int]
:param dilations: The dilation value along each spatial axis of filter.
:type dilations: List[int]
:param ceil_mode: Whether to use ceil or floor when calculating the output dimensions.
:type ceil_mode: bool
:param name: Name of the node (optional).
......
......@@ -46,7 +46,33 @@ template <DimIdx_t DIM> void declare_PaddedConvOp(py::module &m) {
py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0),
py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1),
py::arg("no_bias")= false);
py::arg("no_bias")= false,
R"mydelimiter(
Initialize a node containing a Padded Convolution operator.
This operator performs a convolution operation with explicit padding. It applies a
kernel filter over an input tensor with specified stride and dilation settings.
:param in_channels: Number of input channels.
:type in_channels: int
:param out_channels: Number of output channels.
:type out_channels: int
:param kernel_dims: The size of the convolutional kernel for each dimension.
:type kernel_dims: List[int]
:param stride_dims: The stride (step size) for kernel movement.
:type stride_dims: List[int]
:param padding_dims: Explicit padding to apply before convolution.
:type padding_dims: List[int]
:param dilation_dims: The dilation factor for kernel spacing.
:type dilation_dims: List[int]
:param no_bias: Whether to disable bias addition in the convolution.
:type no_bias: bool
:param name: Name of the node (optional).
:type name: str
:return: A node containing the Padded Convolution operator.
:rtype: :py:class:`PaddedConvOp`
)mydelimiter");
m.def(("PaddedConv" + std::to_string(DIM) + "DOp").c_str(), [](
const std::vector<DimSize_t>& kernel_dims,
const std::vector<DimSize_t> &stride_dims,
......@@ -62,9 +88,28 @@ template <DimIdx_t DIM> void declare_PaddedConvOp(py::module &m) {
}, py::arg("kernel_dims"),
py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0),
py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1));
py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1),
R"mydelimiter(
Initialize a Padded Convolution operator.
This function defines a convolution operation that includes explicit padding before
applying the kernel. The padding allows control over output dimensions while maintaining
receptive field properties.
:param kernel_dims: The size of the convolutional kernel for each dimension.
:type kernel_dims: List[int]
:param stride_dims: The stride (step size) for kernel movement.
:type stride_dims: List[int]
:param padding_dims: Padding applied before convolution.
:type padding_dims: List[int]
:param dilation_dims: The dilation factor for kernel spacing.
:type dilation_dims: List[int]
:return: A Padded Convolution operator.
:rtype: :py:class:`PaddedConvOp`
)mydelimiter");
}
template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) {
m.def(("PaddedConvDepthWise" + std::to_string(DIM) + "D").c_str(), [](const DimSize_t nb_channels,
const std::vector<DimSize_t>& kernel_dims,
......@@ -86,7 +131,32 @@ template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) {
py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0),
py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1),
py::arg("no_bias") = false);
py::arg("no_bias") = false,
R"mydelimiter(
Initialize a node containing a Depthwise Padded Convolution operator.
This operator performs a depthwise convolution operation, where each input channel is
convolved separately with a different kernel. The operation includes explicit padding,
stride control, and dilation options.
:param nb_channels: Number of input channels (also the number of output channels since depthwise convolution does not mix channels).
:type nb_channels: int
:param kernel_dims: The size of the convolutional kernel for each dimension.
:type kernel_dims: List[int]
:param stride_dims: The stride (step size) for kernel movement.
:type stride_dims: List[int]
:param padding_dims: Explicit padding to apply before convolution.
:type padding_dims: List[int]
:param dilation_dims: The dilation factor for kernel spacing.
:type dilation_dims: List[int]
:param no_bias: Whether to disable bias addition in the convolution.
:type no_bias: bool
:param name: Name of the node (optional).
:type name: str
:return: A node containing the Depthwise Padded Convolution operator.
:rtype: :py:class:`PaddedConvDepthWiseOp`
)mydelimiter");
m.def(("PaddedConvDepthWise" + std::to_string(DIM) + "DOp").c_str(), [](
const std::vector<DimSize_t>& kernel_dims,
const std::vector<DimSize_t> &stride_dims,
......@@ -102,90 +172,258 @@ template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) {
}, py::arg("kernel_dims"),
py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0),
py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1));
py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1),
R"mydelimiter(
Initialize a Depthwise Padded Convolution operator.
This function defines a depthwise convolution operation that includes explicit padding
before applying the kernel. Depthwise convolution applies a separate filter to each
input channel, preserving channel independence.
:param kernel_dims: The size of the convolutional kernel for each dimension.
:type kernel_dims: List[int]
:param stride_dims: The stride (step size) for kernel movement.
:type stride_dims: List[int]
:param padding_dims: Padding applied before convolution.
:type padding_dims: List[int]
:param dilation_dims: The dilation factor for kernel spacing.
:type dilation_dims: List[int]
:return: A Depthwise Padded Convolution operator.
:rtype: :py:class:`PaddedConvDepthWiseOp`
)mydelimiter");
}
template <DimIdx_t DIM> void declare_PaddedAvgPoolingOp(py::module &m) {
m.def(("PaddedAvgPooling" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims,
const std::string& name,
const std::vector<DimSize_t> &stride_dims,
const std::vector<DimSize_t> &padding_dims)
const std::vector<DimSize_t> &dilations,
const std::vector<DimSize_t> &padding_dims,
bool ceil_mode)
{
AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM);
AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM);
AIDGE_ASSERT(dilations.size() == DIM, "dilations size [{}] does not match DIM [{}]", dilations.size(), DIM);
AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM);
return PaddedAvgPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()));
return PaddedAvgPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilations.begin()), to_array<2*DIM>(padding_dims.begin()), ceil_mode);
}, py::arg("kernel_dims"),
py::arg("name") = "",
py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0));
py::arg("dilations") = std::vector<DimSize_t>(DIM,1),
py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0),
py::arg("ceil_mode") = false,
R"mydelimiter(
Initialize a node containing a Padded Average Pooling operator.
This operator performs an average pooling operation with explicit padding. The output value
is computed as the average of input values within a defined kernel window.
:param kernel_dims: The size of the pooling kernel for each dimension.
:type kernel_dims: List[int]
:param stride_dims: The stride (step size) for kernel movement.
:type stride_dims: List[int]
:param dilations: The dilation factor for the kernel, which increases the spacing between elements.
:type dilations: List[int]
:param padding_dims: Explicit padding to apply before pooling.
:type padding_dims: List[int]
:param ceil_mode: If set to True, the output shape is computed using ceil instead of floor.
:type ceil_mode: bool
:param name: Name of the node (optional).
:type name: str
:return: A node containing the Padded Average Pooling operator.
:rtype: :py:class:`PaddedAvgPoolingOp`
)mydelimiter");
m.def(("PaddedAvgPooling" + std::to_string(DIM) + "DOp").c_str(), [](const std::vector<DimSize_t>& kernel_dims,
const std::vector<DimSize_t> &stride_dims,
const std::vector<DimSize_t> &padding_dims)
const std::vector<DimSize_t> &dilations,
const std::vector<DimSize_t> &padding_dims,
bool ceil_mode)
{
AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM);
AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM);
AIDGE_ASSERT(dilations.size() == DIM, "dilations size [{}] does not match DIM [{}]", dilations.size(), DIM);
AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM);
return PaddedAvgPooling_Op<DIM>(to_array<DIM>(kernel_dims.begin()), to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()));
return PaddedAvgPooling_Op<DIM>(to_array<DIM>(kernel_dims.begin()), to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilations.begin()), to_array<2*DIM>(padding_dims.begin()), ceil_mode);
}, py::arg("kernel_dims"),
py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0));
py::arg("dilations") = std::vector<DimSize_t>(DIM,1),
py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0),
py::arg("ceil_mode") = false,
R"mydelimiter(
Initialize a Padded Average Pooling operator.
This function defines an average pooling operation with explicit padding before pooling is applied.
The operation computes the average of the elements inside each kernel window.
:param kernel_dims: The size of the pooling kernel for each dimension.
:type kernel_dims: List[int]
:param stride_dims: The stride (step size) for kernel movement.
:type stride_dims: List[int]
:param dilations: The dilation factor for the kernel, which increases the spacing between elements.
:type dilations: List[int]
:param padding_dims: Padding applied before pooling.
:type padding_dims: List[int]
:param ceil_mode: If set to True, the output shape is computed using ceil instead of floor.
:type ceil_mode: bool
:return: A Padded Average Pooling operator.
:rtype: :py:class:`PaddedAvgPoolingOp`
)mydelimiter");
}
template <DimIdx_t DIM> void declare_PaddedMaxPoolingOp(py::module &m) {
m.def(("PaddedMaxPooling" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims,
const std::string& name,
const std::vector<DimSize_t> &stride_dims,
const std::vector<DimSize_t> &dilations,
const std::vector<DimSize_t> &padding_dims,
bool ceil_mode)
{
AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM);
AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM);
AIDGE_ASSERT(dilations.size() == DIM, "dilations size [{}] does not match DIM [{}]", dilations.size(), DIM);
AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM);
return PaddedMaxPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), ceil_mode);
return PaddedMaxPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilations.begin()), to_array<2*DIM>(padding_dims.begin()), ceil_mode);
}, py::arg("kernel_dims"),
py::arg("name") = "",
py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
py::arg("dilations") = std::vector<DimSize_t>(DIM,1),
py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0),
py::arg("ceil_mode") = false);
py::arg("ceil_mode") = false,
R"mydelimiter(
Initialize a node containing a Padded Max Pooling operator.
This operator performs a max pooling operation with explicit padding before pooling is applied.
The output value is computed as the maximum of input values within a defined kernel window.
:param kernel_dims: The size of the pooling kernel for each dimension.
:type kernel_dims: List[int]
:param stride_dims: The stride (step size) for kernel movement.
:type stride_dims: List[int]
:param dilations: The dilation factor for the kernel, which increases the spacing between elements.
:type dilations: List[int]
:param padding_dims: Explicit padding to apply before pooling.
:type padding_dims: List[int]
:param ceil_mode: If set to True, the output shape is computed using ceil instead of floor.
:type ceil_mode: bool
:param name: Name of the node (optional).
:type name: str
:return: A node containing the Padded Max Pooling operator.
:rtype: :py:class:`PaddedMaxPoolingOp`
)mydelimiter");
m.def(("PaddedMaxPooling" + std::to_string(DIM) + "DOp").c_str(), [](const std::vector<DimSize_t>& kernel_dims,
const std::vector<DimSize_t> &stride_dims,
const std::vector<DimSize_t> &dilations,
const std::vector<DimSize_t> &padding_dims,
bool ceil_mode)
{
AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM);
AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM);
AIDGE_ASSERT(dilations.size() == DIM, "dilations size [{}] does not match DIM [{}]", dilations.size(), DIM);
AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM);
return PaddedMaxPooling_Op<DIM>(to_array<DIM>(kernel_dims.begin()), to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), ceil_mode);
return PaddedMaxPooling_Op<DIM>(to_array<DIM>(kernel_dims.begin()), to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilations.begin()), to_array<2*DIM>(padding_dims.begin()), ceil_mode);
}, py::arg("kernel_dims"),
py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
py::arg("dilations") = std::vector<DimSize_t>(DIM,1),
py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0),
py::arg("ceil_mode") = false);
py::arg("ceil_mode") = false,
R"mydelimiter(
Initialize a Padded Max Pooling operator.
This function defines a max pooling operation with explicit padding before pooling is applied.
The operation computes the maximum of the elements inside each kernel window.
:param kernel_dims: The size of the pooling kernel for each dimension.
:type kernel_dims: List[int]
:param stride_dims: The stride (step size) for kernel movement.
:type stride_dims: List[int]
:param dilations: The dilation factor for the kernel, which increases the spacing between elements.
:type dilations: List[int]
:param padding_dims: Padding applied before pooling.
:type padding_dims: List[int]
:param ceil_mode: If set to True, the output shape is computed using ceil instead of floor.
:type ceil_mode: bool
:return: A Padded Max Pooling operator.
:rtype: :py:class:`PaddedMaxPoolingOp`
)mydelimiter");
}
void declare_LSTMOp(py::module &m) {
m.def("LSTM", &LSTM, py::arg("in_channels"),
m.def("LSTM", &LSTM,
py::arg("in_channels"),
py::arg("hidden_channels"),
py::arg("seq_length"),
py::arg("nobias") = false,
py::arg("name") = "");
py::arg("name") = "",
R"mydelimiter(
Initialize a node containing an LSTM (Long Short-Term Memory) operator.
The LSTM operator is a recurrent neural network (RNN) variant designed to model sequential data
while addressing the vanishing gradient problem. It includes gating mechanisms to control
information flow through time.
:param in_channels: The number of input features per time step.
:type in_channels: int
:param hidden_channels: The number of hidden units in the LSTM.
:type hidden_channels: int
:param seq_length: The number of time steps in the input sequence.
:type seq_length: int
:param nobias: If set to True, no bias terms are included in the LSTM computation.
:type nobias: bool
:param name: Name of the node (optional).
:type name: str
:return: A node containing the LSTM operator.
:rtype: :py:class:`LSTM`
)mydelimiter");
m.def("LSTMOp", &LSTM_Op,
py::arg("seq_length"),
py::arg("name") = "");
py::arg("name") = "",
R"mydelimiter(
Initialize an LSTM operation.
This function sets up an LSTM operator to process sequential data. The LSTM maintains hidden
states over time steps, allowing it to learn long-range dependencies.
:param seq_length: The length of the input sequence.
:type seq_length: int
:param name: Name of the node (optional).
:type name: str
:return: An LSTM operator.
:rtype: :py:class:`LSTMOp`
)mydelimiter");
}
void declare_LeakyOp(py::module &m) {
m.def("Leaky", &Leaky,
py::arg("nb_timesteps"),
py::arg("beta"),
py::arg("threshold") = 1.0,
py::arg("name") = "");
py::arg("name") = "",
R"mydelimiter(
Initialize a Leaky neuron operator.
The Leaky operator introduces a decay factor, allowing neuron states to "leak" over time instead of resetting
abruptly. This helps in maintaining temporal memory.
:param nb_timesteps: The number of time steps for the operation.
:type nb_timesteps: int
:param beta: The leakage factor controlling decay over time.
:type beta: float
:param threshold: The activation threshold (default is 1.0).
:type threshold: float
:param name: Name of the node (optional).
:type name: str
:return: A node containing the Leaky operator.
:rtype: :py:class:`Leaky`
)mydelimiter");
}
void init_MetaOperatorDefs(py::module &m) {
......
......@@ -50,9 +50,11 @@ void init_Conv(py::module&);
void init_ConvDepthWise(py::module&);
void init_DepthToSpace(py::module&);
void init_Div(py::module&);
void init_Equal(py::module&);
void init_Erf(py::module&);
void init_Expand(py::module&);
void init_FC(py::module&);
void init_Flatten(py::module&);
void init_Gather(py::module&);
void init_GenericOperator(py::module&);
void init_GlobalAveragePooling(py::module&);
......@@ -149,9 +151,11 @@ void init_Aidge(py::module& m) {
init_ConstantOfShape(m);
init_DepthToSpace(m);
init_Div(m);
init_Equal(m);
init_Erf(m);
init_Expand(m);
init_FC(m);
init_Flatten(m);
init_Gather(m);
init_GenericOperator(m);
init_GlobalAveragePooling(m);
......
......@@ -47,17 +47,28 @@ std::shared_ptr<Aidge::Operator> Aidge::AvgPooling_Op<DIM>::clone() const {
template <Aidge::DimIdx_t DIM>
bool Aidge::AvgPooling_Op<DIM>::forwardDims(bool /*allowDataDependency*/) {
if (inputsAssociated()) {
std::array<DimSize_t, DIM + 2> outputDims;
std::array<DimSize_t, DIM + 2> outputDims{};
const std::array<DimSize_t, DIM + 2> inputDims(getInput(0)->template dims<DIM+2>());
outputDims[0] = inputDims[0];
outputDims[1] = inputDims[1];
for (std::size_t dim = 0; dim < mAttributes->template getAttr<AvgPoolingAttr::KernelDims>().size() ; ++dim) {
std::function<float(float)> roundingFunction;
if (mAttributes->template getAttr<AvgPoolingAttr::CeilMode>()) {
roundingFunction = [](float x) { return std::ceil(x); };
} else {
roundingFunction = [](float x) { return std::floor(x); };
}
for (std::size_t dim = 0; dim < mAttributes->template getAttr<AvgPoolingAttr::KernelDims>().size(); ++dim) {
const auto kernelDim = mAttributes->template getAttr<AvgPoolingAttr::KernelDims>()[dim];
const auto strideDim = mAttributes->template getAttr<AvgPoolingAttr::StrideDims>()[dim];
const auto dilationDim = mAttributes->template getAttr<AvgPoolingAttr::Dilations>()[dim];
outputDims[dim+2] = 1 + static_cast<DimSize_t>(
std::floor(static_cast<float>(inputDims[dim+2] -
mAttributes->template getAttr<AvgPoolingAttr::KernelDims>()[dim]) /
static_cast<float>(mAttributes->template getAttr<AvgPoolingAttr::StrideDims>()[dim])));
roundingFunction(static_cast<float>(inputDims[dim+2] -
(kernelDim - 1) * dilationDim - 1) /
static_cast<float>(strideDim)));
}
outputDims[1] = inputDims[1];
outputDims[0] = inputDims[0];
getOutput(0)->resize(outputDims);
return true;
}
......@@ -96,7 +107,8 @@ Aidge::AvgPooling_Op<DIM>::computeReceptiveField(const std::vector<Aidge::DimSiz
inputDims.push_back((outputDims[2+static_cast<std::size_t>(i)] - 1)
* mAttributes->template getAttr<AvgPoolingAttr::StrideDims>()[static_cast<std::size_t>(i)]
+ 1
+ (mAttributes->template getAttr<AvgPoolingAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1));
+ (mAttributes->template getAttr<AvgPoolingAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1)
* mAttributes->template getAttr<AvgPoolingAttr::Dilations>()[static_cast<std::size_t>(i)]);
inputIdxDims[2+i] *= mAttributes->template getAttr<AvgPoolingAttr::StrideDims>()[static_cast<std::size_t>(i)];
}
std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> res;
......@@ -128,10 +140,12 @@ template class Aidge::AvgPooling_Op<4>;
template <std::array<Aidge::DimSize_t, 1>::size_type DIM>
std::shared_ptr<Aidge::Node> Aidge::AvgPooling(const std::array<Aidge::DimSize_t, DIM> &kernel_dims,
const std::string& name,
const std::array<Aidge::DimSize_t, DIM> &stride_dims) {
const std::array<Aidge::DimSize_t, DIM> &stride_dims,
const std::array<Aidge::DimSize_t, DIM> &dilations,
bool ceil_mode) {
AIDGE_ASSERT(DIM<=MaxDim, "Too many kernel dimensions required by {}, not supported", AvgPooling_Op<DIM>::Type);
return std::make_shared<Node>(std::make_shared<AvgPooling_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims), name);
return std::make_shared<Node>(std::make_shared<AvgPooling_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, dilations, ceil_mode), name);
}
template std::shared_ptr<Aidge::Node> Aidge::AvgPooling<1>(const std::array<Aidge::DimSize_t, 1>&, const std::string&, const std::array<Aidge::DimSize_t, 1>&);
template std::shared_ptr<Aidge::Node> Aidge::AvgPooling<2>(const std::array<Aidge::DimSize_t, 2>&, const std::string&, const std::array<Aidge::DimSize_t, 2>&);
template std::shared_ptr<Aidge::Node> Aidge::AvgPooling<3>(const std::array<Aidge::DimSize_t, 3>&, const std::string&, const std::array<Aidge::DimSize_t, 3>&);
template std::shared_ptr<Aidge::Node> Aidge::AvgPooling<1>(const std::array<Aidge::DimSize_t, 1>&, const std::string&, const std::array<Aidge::DimSize_t, 1>&, const std::array<Aidge::DimSize_t, 1>&, bool);
template std::shared_ptr<Aidge::Node> Aidge::AvgPooling<2>(const std::array<Aidge::DimSize_t, 2>&, const std::string&, const std::array<Aidge::DimSize_t, 2>&, const std::array<Aidge::DimSize_t, 2>&, bool);
template std::shared_ptr<Aidge::Node> Aidge::AvgPooling<3>(const std::array<Aidge::DimSize_t, 3>&, const std::string&, const std::array<Aidge::DimSize_t, 3>&, const std::array<Aidge::DimSize_t, 3>&, bool);
/********************************************************************************
* Copyright (c) 2024 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <cstddef> // std::size_t
#include <memory>
#include <stdexcept> // std::runtime_error
#include <string>
#include <vector>
#include "aidge/backend/OperatorImpl.hpp"
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/Equal.hpp"
#include "aidge/utils/ErrorHandling.hpp"
#include "aidge/utils/Types.h"
const std::string Aidge::Equal_Op::Type = "Equal";
bool Aidge::Equal_Op::forwardDims(bool /*allowDataDependency*/) {
if (inputsAssociated()) {
const std::vector<std::size_t>& inputsDims0 = getInput(0)->dims();
const std::vector<std::size_t>& inputsDims1 = getInput(1)->dims();
std::vector<std::size_t> outDims = (inputsDims0.size() >= inputsDims1.size()) ? inputsDims0 : inputsDims1;
const std::vector<std::size_t>& lowDims = (inputsDims0.size() < inputsDims1.size()) ? inputsDims0 : inputsDims1;
std::size_t out_id = outDims.size() - 1;
std::size_t low_id = lowDims.size() - 1;
std::size_t i = 0;
while (i++ < lowDims.size()) {
if (outDims[out_id] == 1) {
outDims[out_id] = lowDims[low_id];
}
else if ((lowDims[low_id] != 1) && (lowDims[low_id] != outDims[out_id])) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "Incompatible Tensor shape for Equal Operation: {} for input#0 vs {} for input#1",
inputsDims0, inputsDims1);
}
--out_id;
--low_id;
}
mOutputs[0]->resize(outDims);
return true;
}
return false;
}
void Aidge::Equal_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) {
SET_IMPL_MACRO(Equal_Op, *this, name);
mOutputs[0]->setBackend(name, device);
}
std::set<std::string> Aidge::Equal_Op::getAvailableBackends() const {
return Registrar<Equal_Op>::getKeys();
}
......@@ -25,11 +25,13 @@ const std::string Aidge::MaxPooling_Op<DIM>::Type = "MaxPooling" + std::to_strin
template <Aidge::DimIdx_t DIM>
Aidge::MaxPooling_Op<DIM>::MaxPooling_Op(const std::array<Aidge::DimSize_t, DIM> &kernel_dims,
const std::array<Aidge::DimSize_t, DIM> &stride_dims,
const std::array<Aidge::DimSize_t, DIM> &dilations,
bool ceil_mode)
: OperatorTensor(Type, {InputCategory::Data}, 1),
mAttributes(std::make_shared<Attributes_>(
attr<MaxPoolingAttr::StrideDims>(stride_dims),
attr<MaxPoolingAttr::KernelDims>(kernel_dims),
attr<MaxPoolingAttr::Dilations>(dilations),
attr<MaxPoolingAttr::CeilMode>(ceil_mode)))
{}
......@@ -63,11 +65,15 @@ bool Aidge::MaxPooling_Op<DIM>::forwardDims(bool /*allowDataDependency*/) {
roundingFunction = [](float x) { return std::floor(x); };
}
for (std::size_t dim = 0; dim < mAttributes->template getAttr<MaxPoolingAttr::KernelDims>().size() ; ++dim) {
for (std::size_t dim = 0; dim < mAttributes->template getAttr<MaxPoolingAttr::KernelDims>().size(); ++dim) {
const auto kernelDim = mAttributes->template getAttr<MaxPoolingAttr::KernelDims>()[dim];
const auto strideDim = mAttributes->template getAttr<MaxPoolingAttr::StrideDims>()[dim];
const auto dilationDim = mAttributes->template getAttr<MaxPoolingAttr::Dilations>()[dim];
outputDims[dim+2] = 1 + static_cast<DimSize_t>(
roundingFunction(static_cast<float>(inputDims[dim+2] -
mAttributes->template getAttr<MaxPoolingAttr::KernelDims>()[dim]) /
static_cast<float>(mAttributes->template getAttr<MaxPoolingAttr::StrideDims>()[dim])));
roundingFunction(static_cast<float>(inputDims[dim+2] -
(kernelDim - 1) * dilationDim - 1) /
static_cast<float>(strideDim)));
}
outputDims[1] = inputDims[1];
outputDims[0] = inputDims[0];
......@@ -98,12 +104,13 @@ template <std::array<Aidge::DimSize_t, 1>::size_type DIM>
std::shared_ptr<Aidge::Node> Aidge::MaxPooling(const std::array<Aidge::DimSize_t, DIM> &kernel_dims,
const std::string& name,
const std::array<Aidge::DimSize_t, DIM> &stride_dims,
const std::array<Aidge::DimSize_t, DIM> &dilations,
bool ceil_mode)
{
static_assert(DIM<=MaxDim,"Too many kernel dimensions required by MaxPooling, not supported");
return std::make_shared<Node>(std::make_shared<MaxPooling_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, ceil_mode), name);
return std::make_shared<Node>(std::make_shared<MaxPooling_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, dilations, ceil_mode), name);
}
template std::shared_ptr<Aidge::Node> Aidge::MaxPooling<1>(const std::array<Aidge::DimSize_t, 1>&, const std::string&, const std::array<Aidge::DimSize_t, 1>&, bool);
template std::shared_ptr<Aidge::Node> Aidge::MaxPooling<2>(const std::array<Aidge::DimSize_t, 2>&, const std::string&, const std::array<Aidge::DimSize_t, 2>&, bool);
template std::shared_ptr<Aidge::Node> Aidge::MaxPooling<3>(const std::array<Aidge::DimSize_t, 3>&, const std::string&, const std::array<Aidge::DimSize_t, 3>&, bool);
template std::shared_ptr<Aidge::Node> Aidge::MaxPooling<1>(const std::array<Aidge::DimSize_t, 1>&, const std::string&, const std::array<Aidge::DimSize_t, 1>&, const std::array<Aidge::DimSize_t, 1>&, bool);
template std::shared_ptr<Aidge::Node> Aidge::MaxPooling<2>(const std::array<Aidge::DimSize_t, 2>&, const std::string&, const std::array<Aidge::DimSize_t, 2>&, const std::array<Aidge::DimSize_t, 2>&, bool);
template std::shared_ptr<Aidge::Node> Aidge::MaxPooling<3>(const std::array<Aidge::DimSize_t, 3>&, const std::string&, const std::array<Aidge::DimSize_t, 3>&, const std::array<Aidge::DimSize_t, 3>&, bool);
......@@ -34,31 +34,35 @@ template <std::array<DimSize_t, 1>::size_type DIM>
std::shared_ptr<Node> PaddedAvgPooling(const std::array<DimSize_t, DIM> &kernel_dims,
const std::string& name,
const std::array<DimSize_t, DIM> &stride_dims,
const std::array<DimSize_t, 2*DIM> &padding_dims)
const std::array<DimSize_t, DIM> &dilations,
const std::array<DimSize_t, 2*DIM> &padding_dims,
bool ceil_mode)
{
auto graph = Sequential({
Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : ""),
AvgPooling(kernel_dims, (!name.empty()) ? name + "_avgpooling" : "", stride_dims)
AvgPooling(kernel_dims, (!name.empty()) ? name + "_avgpooling" : "", stride_dims, dilations, ceil_mode)
});
return MetaOperator(("PaddedAvgPooling" + std::to_string(DIM) + "D").c_str(), graph, {}, name);
}
template std::shared_ptr<Node> PaddedAvgPooling<1>(const std::array<DimSize_t,1>&, const std::string&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&);
template std::shared_ptr<Node> PaddedAvgPooling<2>(const std::array<DimSize_t,2>&, const std::string&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&);
template std::shared_ptr<Node> PaddedAvgPooling<1>(const std::array<DimSize_t,1>&, const std::string&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&, bool);
template std::shared_ptr<Node> PaddedAvgPooling<2>(const std::array<DimSize_t,2>&, const std::string&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&, bool);
// helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction
template <DimSize_t DIM>
std::shared_ptr<Node> PaddedAvgPooling(const DimSize_t (&kernel_dims)[DIM],
const std::string& name,
const std::array<DimSize_t, DIM> &stride_dims,
const std::array<DimSize_t, 2*DIM> &padding_dims)
const std::array<DimSize_t, DIM> &dilations,
const std::array<DimSize_t, 2*DIM> &padding_dims,
bool ceil_mode)
{
return PaddedAvgPooling(to_array(kernel_dims), name, stride_dims, padding_dims);
return PaddedAvgPooling(to_array(kernel_dims), name, stride_dims, dilations, padding_dims, ceil_mode);
}
template std::shared_ptr<Node> PaddedAvgPooling<1>(const DimSize_t (&kernel_dims)[1], const std::string&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&);
template std::shared_ptr<Node> PaddedAvgPooling<2>(const DimSize_t (&kernel_dims)[2], const std::string&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&);
template std::shared_ptr<Node> PaddedAvgPooling<1>(const DimSize_t (&kernel_dims)[1], const std::string&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&, bool);
template std::shared_ptr<Node> PaddedAvgPooling<2>(const DimSize_t (&kernel_dims)[2], const std::string&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&, bool);
//////////////////////////////////
......@@ -68,17 +72,19 @@ template std::shared_ptr<Node> PaddedAvgPooling<2>(const DimSize_t (&kernel_dims
template <std::array<DimSize_t, 1>::size_type DIM>
inline std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims,
const std::array<DimSize_t, DIM> &stride_dims,
const std::array<DimSize_t, 2*DIM> &padding_dims)
const std::array<DimSize_t, DIM> &dilations,
const std::array<DimSize_t, 2*DIM> &padding_dims,
bool ceil_mode)
{
auto graph = Sequential({
Pad<DIM>(padding_dims, ""),
AvgPooling(kernel_dims, "", stride_dims)
AvgPooling(kernel_dims, "", stride_dims, dilations, ceil_mode)
});
return std::make_shared<MetaOperator_Op>(("PaddedAvgPooling" + std::to_string(DIM) + "D").c_str(), graph);
}
template std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op<1>(const std::array<DimSize_t,1>&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&);
template std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op<2>(const std::array<DimSize_t,2>&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&);
template std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op<1>(const std::array<DimSize_t,1>&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&, bool);
template std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op<2>(const std::array<DimSize_t,2>&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&, bool);
} // namespace Aidge
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment