diff --git a/include/aidge/aidge.hpp b/include/aidge/aidge.hpp index 3031fc19b335f6e77bb7999f8b3a2b107e3f5323..cd36a654772d2d641b9af32bb74b1336f4a9742d 100644 --- a/include/aidge/aidge.hpp +++ b/include/aidge/aidge.hpp @@ -47,6 +47,7 @@ #include "aidge/operator/Conv.hpp" #include "aidge/operator/ConvDepthWise.hpp" #include "aidge/operator/Div.hpp" +#include "aidge/operator/Equal.hpp" #include "aidge/operator/Erf.hpp" #include "aidge/operator/FC.hpp" #include "aidge/operator/Gather.hpp" diff --git a/include/aidge/operator/AvgPooling.hpp b/include/aidge/operator/AvgPooling.hpp index 981f71762757795461226f2b052bda7f4bc9cd89..ab9e111f2adcb1d09635924184c89800900d0635 100644 --- a/include/aidge/operator/AvgPooling.hpp +++ b/include/aidge/operator/AvgPooling.hpp @@ -33,12 +33,21 @@ enum class AvgPoolingAttr { * Specifies the step size of the sliding window along each spatial dimension. */ StrideDims, - + /** + * @brief Dilation along each spatial axis. Default value is 1. + */ + Dilations, /** * @brief Kernel dimensions for the pooling operation. * Specifies the size of the pooling window along each spatial dimension. */ - KernelDims + KernelDims, + /** + * @brief Flag indicating whether to use ceil or floor when calculating output size. + * - `true`: Use `ceil` for output size calculation. + * - `false`: Use `floor` for output size calculation. + */ + CeilMode }; /** @@ -46,11 +55,30 @@ enum class AvgPoolingAttr { * * The AvgPooling operation computes the average value within sliding windows of specified size * (kernel dimensions) over the input tensor. The stride dimensions determine how the window - * moves across the input. This operation is commonly used in neural networks to reduce the spatial - * dimensions while preserving features. + * moves across the input. The dilation parameter allows spacing between kernel elements, and + * `ceil_mode` determines whether to use ceiling instead of floor when computing the output shape. + * This operation is commonly used in neural networks to reduce spatial dimensions while preserving features. * * @tparam DIM Number of dimensions for the pooling operation. + * + * ### Output Shape Calculation + * - If `ceil_mode` is false: + * `output_size = floor((input_size - dilation * (kernel_size - 1) - 1) / stride + 1)` + * - If `ceil_mode` is true: + * `output_size = ceil((input_size - dilation * (kernel_size - 1) - 1) / stride + 1)` + * + * @example Example usage: + * - Input shape: (1, 3, 32, 32) // Batch size 1, 3 channels, 32x32 spatial dimensions + * - KernelDims: (2, 2) + * - StrideDims: (2, 2) + * - Dilation: (1, 1) + * - CeilMode: false + * - Output shape: (1, 3, 16, 16) + * + * @see OperatorTensor + * @see Registrable */ + template <DimIdx_t DIM> class AvgPooling_Op : public OperatorTensor, public Registrable<AvgPooling_Op<DIM>, std::string, std::function<std::shared_ptr<OperatorImpl>(const AvgPooling_Op<DIM> &)>> { @@ -67,7 +95,9 @@ private: */ using Attributes_ = StaticAttributes<AvgPoolingAttr, std::array<DimSize_t, DIM>, - std::array<DimSize_t, DIM>>; + std::array<DimSize_t, DIM>, + std::array<DimSize_t, DIM>, + bool>; template <AvgPoolingAttr e> using attr = typename Attributes_::template attr<e>; @@ -84,21 +114,27 @@ public: /** * @brief Constructs an AvgPooling operation with specified kernel and stride dimensions. - * @param kernel_dims Size of the pooling window for each spatial dimension. - * @param stride_dims Step size (stride) for sliding the pooling window across the input dimensions. + * @param[in] kernel_dims Size of the pooling window for each spatial dimension. + * @param[in] stride_dims Step size (stride) for sliding the pooling window across the input dimensions. * Defaults to 1 for each dimension. + * @param[in] dilations Spatial dilations for the pooling operation. + * @param[in] ceil_mode Indicates whether to use ceil mode for output size calculation. */ constexpr AvgPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims, - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t, DIM>(1)) + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t, DIM>(1), + const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t, DIM>(1), + bool ceil_mode = false) : OperatorTensor(Type, {InputCategory::Data}, 1), mAttributes(std::make_shared<Attributes_>( attr<AvgPoolingAttr::StrideDims>(stride_dims), - attr<AvgPoolingAttr::KernelDims>(kernel_dims))) + attr<AvgPoolingAttr::KernelDims>(kernel_dims), + attr<AvgPoolingAttr::Dilations>(dilations), + attr<AvgPoolingAttr::CeilMode>(ceil_mode))) {} /** * @brief Copy-constructor. - * @param op AvgPooling_Op to copy. + * @param[in] op AvgPooling_Op to copy. * @details Copies the operator attributes and its output tensor(s), but not * its input tensors. The new operator has no associated input. */ @@ -112,16 +148,16 @@ public: /** * @brief Calculates the output dimensions based on the input dimensions and operator attributes. - * @param allowDataDependency If true, considers data-dependent operations. Defaults to false. + * @param[in] allowDataDependency If true, considers data-dependent operations. Defaults to false. * @return True if the dimensions are successfully calculated. */ bool forwardDims(bool /*allowDataDependency*/ = false) override final; /** * @brief Computes the receptive field of the operator. - * @param firstEltDims Dimensions of the first element. - * @param outputDims Dimensions of the output tensor. - * @param outputIdx Index of the output tensor. Defaults to 0. + * @param[in] firstEltDims Dimensions of the first element. + * @param[in] outputDims Dimensions of the output tensor. + * @param[in] outputIdx Index of the output tensor. Defaults to 0. * @return A vector of pairs representing the receptive fields. */ std::vector<std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>> @@ -131,8 +167,8 @@ public: /** * @brief Sets the backend for the operation. - * @param name Name of the backend. - * @param device Device index. Defaults to 0. + * @param[in] name Name of the backend. + * @param[in] device Device index. Defaults to 0. */ void setBackend(const std::string &name, DeviceIdx_t device = 0) override final; @@ -155,11 +191,23 @@ public: inline std::array<DimSize_t, DIM>& strideDims() const { return mAttributes->template getAttr<AvgPoolingAttr::StrideDims>(); } /** - * @brief Accessor for the kernel dimensions. - * @return An array representing the kernel dimensions. + * @brief Accessor for dilations. + * @return An array representing spatial dilations. + */ + inline std::array<DimSize_t, DIM>& dilations() const { return mAttributes->template getAttr<AvgPoolingAttr::Dilations>(); } + + /** + * @brief Accessor for kernel dimensions. + * @return An array representing kernel dimensions. */ inline std::array<DimSize_t, DIM>& kernelDims() const { return mAttributes->template getAttr<AvgPoolingAttr::KernelDims>(); } + /** + * @brief Accessor for ceil mode flag. + * @return Boolean value indicating whether ceil mode is enabled. + */ + inline bool& ceilMode() const { return mAttributes->template getAttr<AvgPoolingAttr::CeilMode>(); } + /** * @brief Retrieves the names of the input tensors. * @return A vector of strings representing the input tensors names. @@ -180,31 +228,39 @@ public: /** * @brief Creates an AvgPooling operator node. * @tparam DIM Number of dimensions for the pooling operation. - * @param kernel_dims Size of the pooling window for each spatial dimension. - * @param name Name of the operator node. Defaults to an empty string. - * @param stride_dims Step size (stride) for sliding the pooling window across the input dimensions. Defaults to 1 for each dimension. + * @param[in] kernel_dims Size of the pooling window for each spatial dimension. + * @param[in] name Name of the operator node. Defaults to an empty string. + * @param[in] stride_dims Step size (stride) for sliding the pooling window across the input dimensions. Defaults to 1 for each dimension. + * @param[in] dilations Spatial dilations for the pooling operation. + * @param[in] ceil_mode Indicates whether to use ceil mode for output size calculation. * @return A shared pointer to the created operator node. */ template <std::array<DimSize_t, 1>::size_type DIM> std::shared_ptr<Node> AvgPooling(const std::array<DimSize_t, DIM> &kernel_dims, const std::string& name = "", - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1)); + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1), + bool ceil_mode=false); /** * @brief Overload of AvgPooling for C-style arrays. * @tparam DIM Number of dimensions for the pooling operation. - * @param kernel_dims C-style array specifying the kernel dimensions. - * @param name Name of the operator node. Defaults to an empty string. - * @param stride_dims Step size (stride) for sliding the pooling window across the input dimensions. Defaults to 1 for each dimension. + * @param[in] kernel_dims C-style array specifying the kernel dimensions. + * @param[in] name Name of the operator node. Defaults to an empty string. + * @param[in] stride_dims Step size (stride) for sliding the pooling window across the input dimensions. Defaults to 1 for each dimension. + * @param[in] dilations Spatial dilations for the pooling operation. + * @param[in] ceil_mode Indicates whether to use ceil mode for output size calculation. * @return A shared pointer to the created operator node. */ template <DimSize_t DIM> inline std::shared_ptr<Node> AvgPooling( DimSize_t const (&kernel_dims)[DIM], const std::string& name = "", - const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1)) { + const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1), + bool ceil_mode=false) { static_assert(DIM<=MaxDim,"Too many kernel dimensions required by AvgPooling, not supported"); - return AvgPooling(to_array(kernel_dims), name, stride_dims); + return AvgPooling(to_array(kernel_dims), name, stride_dims, dilations, ceil_mode); } } // namespace Aidge @@ -221,10 +277,7 @@ namespace { * @brief String representation of the AvgPooling attributes. */ template <> -const char *const EnumStrings<Aidge::AvgPoolingAttr>::data[] = { - "stride_dims", - "kernel_dims" -}; +const char *const EnumStrings<Aidge::AvgPoolingAttr>::data[] = { "stride_dims", "kernel_dims", "dilations", "ceil_mode" }; } #endif /* AIDGE_CORE_OPERATOR_AVGPOOLING_H_ */ diff --git a/include/aidge/operator/Equal.hpp b/include/aidge/operator/Equal.hpp new file mode 100644 index 0000000000000000000000000000000000000000..12bc9af7812aedf52a4502f270e136c65a4a9756 --- /dev/null +++ b/include/aidge/operator/Equal.hpp @@ -0,0 +1,82 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#ifndef AIDGE_CORE_OPERATOR_EQUAL_H_ +#define AIDGE_CORE_OPERATOR_EQUAL_H_ + +#include <memory> +#include <string> +#include <vector> + +#include "aidge/utils/Registrar.hpp" +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/graph/Node.hpp" +#include "aidge/utils/Types.h" + +namespace Aidge { + +/** + * @brief Tensor element-wise logical equal operation. + */ +class Equal_Op : public OperatorTensor, + public Registrable<Equal_Op, std::string, std::function<std::shared_ptr<OperatorImpl>(const Equal_Op&)>> { +public: + static const std::string Type; + + /** + * @brief Compute element-wise Equal operation on two given inputs. + * @details supports broadcasting of both operands. + */ + Equal_Op() : OperatorTensor(Type, {InputCategory::Data, InputCategory::Data}, 1) {} + + /** + * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), + * but not its input tensors (the new operator has no input associated). + * @param op Operator to copy. + */ + Equal_Op(const Equal_Op& op) + : OperatorTensor(op) + { + if (op.mImpl) { + SET_IMPL_MACRO(Equal_Op, *this, op.backend()); + } else { + mImpl = nullptr; + } + } + + /** + * @brief Clone the operator using its copy-constructor. + * @see Operator::Equal_Op + */ + std::shared_ptr<Operator> clone() const override { + return std::make_shared<Equal_Op>(*this); + } + + bool forwardDims(bool allowDataDependency = false) override final; + + void setBackend(const std::string& name, DeviceIdx_t device = 0) override; + std::set<std::string> getAvailableBackends() const override; + + static const std::vector<std::string> getInputsName(){ + return {"data_input_1", "data_input_2"}; + } + static const std::vector<std::string> getOutputsName(){ + return {"data_output"}; + } +}; + +inline std::shared_ptr<Node> Equal(const std::string& name = "") { + return std::make_shared<Node>(std::make_shared<Equal_Op>(), name); +} +} // namespace Aidge + +#endif /* AIDGE_CORE_OPERATOR_EQUAL_H_ */ diff --git a/include/aidge/operator/MaxPooling.hpp b/include/aidge/operator/MaxPooling.hpp index 8503b1be15df24056d61885af27d0d1778990015..9063fb88b4e018826bff82e0e09e6dbfdbd48421 100644 --- a/include/aidge/operator/MaxPooling.hpp +++ b/include/aidge/operator/MaxPooling.hpp @@ -41,7 +41,10 @@ enum class MaxPoolingAttr { * Must be positive integers. */ StrideDims, - + /** + * @brief Dilation along each spatial axis. Default value is 1. + */ + Dilations, /** * @brief Kernel dimensions specifying the size of the pooling window for each spatial dimension. * For example, common kernel dimensions include 2x2 or 3x3. @@ -63,24 +66,28 @@ enum class MaxPoolingAttr { * @brief Implements the MaxPooling operation over a specified input tensor. * * MaxPooling reduces spatial dimensions by applying a max filter over a sliding window. - * The resulting output tensor contains the maximum value within each window. + * The stride dimensions determine how the window moves across the input. The dilation + * parameter allows spacing between kernel elements, and `ceil_mode` determines whether + * to use ceiling instead of floor when computing the output shape. * * ### Output Shape Calculation - * - If `CeilMode` is false: - * `output_size = floor((input_size - kernel_size) / stride + 1)` - * - If `CeilMode` is true: - * `output_size = ceil((input_size - kernel_size) / stride + 1)` + * - If `ceil_mode` is false: + * `output_size = floor((input_size - dilation * (kernel_size - 1) - 1) / stride + 1)` + * - If `ceil_mode` is true: + * `output_size = ceil((input_size - dilation * (kernel_size - 1) - 1) / stride + 1)` * * @example Example usage: * - Input shape: (1, 3, 32, 32) // Batch size 1, 3 channels, 32x32 spatial dimensions * - KernelDims: (2, 2) * - StrideDims: (2, 2) + * - Dilation: (1, 1) * - CeilMode: false * - Output shape: (1, 3, 16, 16) * * @see OperatorTensor * @see Registrable */ + template <DimIdx_t DIM> class MaxPooling_Op : public OperatorTensor, public Registrable<MaxPooling_Op<DIM>, @@ -91,6 +98,7 @@ public: static const std::string Type; ///< Static identifier for this operator type. using Attributes_ = StaticAttributes<MaxPoolingAttr, + std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, std::array<DimSize_t, DIM>, bool>; @@ -107,15 +115,17 @@ public: * @brief Constructor. * @param[in] kernel_dims Size of the pooling window for each spatial dimension. * @param[in] stride_dims Step size (stride) for sliding the pooling window across input dimensions. + * @param[in] dilations Spatial dilations for the pooling operation. * @param[in] ceil_mode Indicates whether to use ceil or floor for output size calculation. */ MaxPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims, const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t, DIM>(1), bool ceil_mode = false); /** * @brief Copy-constructor. - * @param op MaxPooling_Op to copy. + * @param[in] op MaxPooling_Op to copy. * @details Copies the operator attributes and its output tensor(s), but not * its input tensors. The new operator has no associated input. */ @@ -159,6 +169,12 @@ public: */ inline std::array<DimSize_t, DIM>& strideDims() const { return mAttributes->template getAttr<MaxPoolingAttr::StrideDims>(); } + /** + * @brief Accessor for dilations. + * @return An array representing spatial dilations. + */ + inline std::array<DimSize_t, DIM>& dilations() const { return mAttributes->template getAttr<MaxPoolingAttr::Dilations>(); } + /** * @brief Accessor for kernel dimensions. * @return An array representing kernel dimensions. @@ -197,6 +213,7 @@ extern template class Aidge::MaxPooling_Op<3>; * @param[in] kernel_dims Kernel dimensions specifying the size of the pooling window. * @param[in] name Optional name for the operation. * @param[in] stride_dims Stride dimensions specifying the step size for the pooling window. + * @param[in] dilations Spatial dilations for the pooling operation. * @param[in] ceil_mode Indicates whether to use ceil mode for output size calculation. * @return A shared pointer to a Node representing the MaxPooling operation. */ @@ -204,6 +221,7 @@ template <std::array<DimSize_t, 1>::size_type DIM> std::shared_ptr<Node> MaxPooling(const std::array<DimSize_t, DIM> &kernel_dims, const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1), bool ceil_mode=false); /** @@ -212,6 +230,7 @@ std::shared_ptr<Node> MaxPooling(const std::array<DimSize_t, DIM> &kernel_dims, * @param[in] kernel_dims C-style array of kernel dimensions. * @param[in] name Optional name for the operation. * @param[in] stride_dims Stride dimensions specifying the step size for the pooling window. + * @param[in] dilations Spatial dilations for the pooling operation. * @param[in] ceil_mode Indicates whether to use ceil mode for output size calculation. * @return A shared pointer to a Node representing the MaxPooling operation. */ @@ -220,9 +239,10 @@ inline std::shared_ptr<Node> MaxPooling( DimSize_t const (&kernel_dims)[DIM], const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1), bool ceil_mode = false) { static_assert(DIM<=MaxDim,"Too many kernel dimensions required by MaxPooling, not supported"); - return MaxPooling(to_array(kernel_dims), name, stride_dims, ceil_mode); + return MaxPooling(to_array(kernel_dims), name, stride_dims, dilations, ceil_mode); } } // namespace Aidge @@ -232,7 +252,7 @@ namespace { * @brief String representations of MaxPooling attributes for debugging and logging. */ template <> -const char *const EnumStrings<Aidge::MaxPoolingAttr>::data[] = {"stride_dims", "kernel_dims", "ceil_mode"}; +const char *const EnumStrings<Aidge::MaxPoolingAttr>::data[] = {"stride_dims", "kernel_dims", "dilations", "ceil_mode"}; } #endif /* AIDGE_CORE_OPERATOR_MAXPOOLING_H_ */ diff --git a/include/aidge/operator/MetaOperatorDefs.hpp b/include/aidge/operator/MetaOperatorDefs.hpp index 9597b533c14b27d282985b13cd8e1199ed5360a8..c4ceccf530e7fca8939aeec92067b94f7a6bde80 100644 --- a/include/aidge/operator/MetaOperatorDefs.hpp +++ b/include/aidge/operator/MetaOperatorDefs.hpp @@ -164,14 +164,18 @@ PaddedConvDepthWise(const DimSize_t nb_channels, * @param[in] kernel_dims The dimensions of the pooling window. * @param[in] name Optional name for the operation. * @param[in] stride_dims The stride dimensions for pooling (default is 1). + * @param[in] dilations The spatial dilations for pooling (default is 1). * @param[in] padding_dims Padding dimensions before pooling (default is 0). + * @param[in] ceil_mode Whether to use ceiling mode for pooling (default is false). * @return A shared pointer to the Node representing the padded average pooling operation. */ template <std::array<DimSize_t, 1>::size_type DIM> extern std::shared_ptr<Node> PaddedAvgPooling(const std::array<DimSize_t, DIM> &kernel_dims, const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0)); + const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0), + bool ceil_mode = false); /** * @brief Creates a padded average pooling operation as a MetaOperator. @@ -180,13 +184,17 @@ extern std::shared_ptr<Node> PaddedAvgPooling(const std::array<DimSize_t, DIM> & * * @param[in] kernel_dims The dimensions of the pooling window. * @param[in] stride_dims The stride dimensions for pooling (default is 1). + * @param[in] dilations The spatial dilations for pooling (default is 1). * @param[in] padding_dims Padding dimensions before pooling (default is 0). + * @param[in] ceil_mode Whether to use ceiling mode for pooling (default is false). * @return A shared pointer to the MetaOperator_Op representing the padded average pooling operation. */ template <std::array<DimSize_t, 1>::size_type DIM> extern std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims, const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), - const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0)); + const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0), + bool ceil_mode = false); // Helper function for average pooling with C-style array for kernel_dims, enabling automatic DIM deduction. template <DimSize_t DIM> @@ -195,8 +203,11 @@ PaddedAvgPooling(DimSize_t const (&kernel_dims)[DIM], const std::string &name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t, DIM>(1), + const std::array<DimSize_t, DIM> &dilations = + create_array<DimSize_t, DIM>(1), const std::array<DimSize_t, 2 * DIM> &padding_dims = - create_array<DimSize_t, 2 * DIM>(0)); + create_array<DimSize_t, 2 * DIM>(0), + bool ceil_mode = false); //////////////////////////////////////////////////////////////////////////////// @@ -208,6 +219,7 @@ PaddedAvgPooling(DimSize_t const (&kernel_dims)[DIM], * @param[in] kernel_dims The dimensions of the pooling window. * @param[in] name Optional name for the operation. * @param[in] stride_dims The stride dimensions for pooling (default is 1). + * @param[in] dilations The spatial dilations for pooling (default is 1). * @param[in] padding_dims Padding dimensions before pooling (default is 0). * @param[in] ceil_mode Whether to use ceiling mode for pooling (default is false). * @return A shared pointer to the Node representing the padded max pooling operation. @@ -216,11 +228,12 @@ template <std::array<DimSize_t, 1>::size_type DIM> inline std::shared_ptr<Node> PaddedMaxPooling(const std::array<DimSize_t, DIM> &kernel_dims, const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0), bool ceil_mode = false) { auto graph = Sequential({ Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : ""), - MaxPooling(kernel_dims, (!name.empty()) ? name + "_maxpooling" : "", stride_dims, ceil_mode) + MaxPooling(kernel_dims, (!name.empty()) ? name + "_maxpooling" : "", stride_dims, dilations, ceil_mode) }); return MetaOperator(("PaddedMaxPooling" + std::to_string(DIM) + "D").c_str(), graph, {}, name); @@ -233,6 +246,7 @@ inline std::shared_ptr<Node> PaddedMaxPooling(const std::array<DimSize_t, DIM> & * * @param[in] kernel_dims The dimensions of the pooling window. * @param[in] stride_dims The stride dimensions for pooling (default is 1). + * @param[in] dilations The spatial dilations for pooling (default is 1). * @param[in] padding_dims Padding dimensions before pooling (default is 0). * @param[in] ceil_mode Whether to use ceiling mode for pooling (default is false). * @return A shared pointer to the MetaOperator_Op representing the padded max pooling operation. @@ -240,11 +254,12 @@ inline std::shared_ptr<Node> PaddedMaxPooling(const std::array<DimSize_t, DIM> & template <std::array<DimSize_t, 1>::size_type DIM> inline std::shared_ptr<MetaOperator_Op> PaddedMaxPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims, const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0), bool ceil_mode = false) { auto graph = Sequential({ Pad<DIM>(padding_dims, ""), - MaxPooling(kernel_dims, "", stride_dims, ceil_mode) + MaxPooling(kernel_dims, "", stride_dims, dilations, ceil_mode) }); return std::make_shared<MetaOperator_Op>(("PaddedMaxPooling" + std::to_string(DIM) + "D").c_str(), graph); } @@ -255,9 +270,10 @@ inline std::shared_ptr<Node> PaddedMaxPooling( DimSize_t const (&kernel_dims)[DIM], const std::string& name = "", const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1), + const std::array<DimSize_t, DIM> &dilations = create_array<DimSize_t,DIM>(1), const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0), bool ceil_mode= false) { - return PaddedMaxPooling(to_array(kernel_dims), name, stride_dims, padding_dims, ceil_mode); + return PaddedMaxPooling(to_array(kernel_dims), name, stride_dims, dilations, padding_dims, ceil_mode); } /** diff --git a/python_binding/operator/pybind_AvgPooling.cpp b/python_binding/operator/pybind_AvgPooling.cpp index 24549e3f4f331ee1170a07e61a6190a607274fe3..e376bcffb6ee10449a8bca8cc89f26528865d291 100644 --- a/python_binding/operator/pybind_AvgPooling.cpp +++ b/python_binding/operator/pybind_AvgPooling.cpp @@ -47,11 +47,19 @@ template <DimIdx_t DIM> void declare_AvgPoolingOp(py::module &m) { :param stride_dims: The stride of the pooling operation. Specifies how much the kernel moves in each step. By default, the stride is set to 1 for all dimensions. :type stride_dims: List[int], optional + :param dilations: The dilation value along each spatial axis of filter. + :type dilations: List[int], optional + :param ceil_mode: Whether to use ceil or floor when calculating the output dimensions. + :type ceil_mode: bool, optional )mydelimiter") .def(py::init<const std::array<DimSize_t, DIM> &, - const std::array<DimSize_t, DIM> &>(), + const std::array<DimSize_t, DIM> &, + const std::array<DimSize_t, DIM> &, + bool>(), py::arg("kernel_dims"), - py::arg("stride_dims") = create_array<DimSize_t, DIM>(1)) + py::arg("stride_dims") = create_array<DimSize_t, DIM>(1), + py::arg("dilations") = create_array<DimSize_t, DIM>(1), + py::arg("ceil_mode") = false) .def("get_inputs_name", &AvgPooling_Op<DIM>::getInputsName) .def("get_outputs_name", &AvgPooling_Op<DIM>::getOutputsName) .def_readonly_static("Type", &AvgPooling_Op<DIM>::Type); @@ -60,14 +68,19 @@ template <DimIdx_t DIM> void declare_AvgPoolingOp(py::module &m) { m.def(("AvgPooling" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims, const std::string& name, - const std::vector<DimSize_t>& stride_dims) { + const std::vector<DimSize_t>& stride_dims, + const std::vector<DimSize_t>& dilations, + bool ceil_mode) { AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); + AIDGE_ASSERT(dilations.size() == DIM, "dilations size [{}] does not match DIM [{}]", dilations.size(), DIM); - return AvgPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin())); + return AvgPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilations.begin()), ceil_mode); }, py::arg("kernel_dims"), py::arg("name") = "", py::arg("stride_dims") = std::vector<DimSize_t>(DIM, 1), + py::arg("dilations") = std::vector<DimSize_t>(DIM, 1), + py::arg("ceil_mode") = false, R"mydelimiter( Initialize a node containing an AvgPooling operator. @@ -75,6 +88,10 @@ template <DimIdx_t DIM> void declare_AvgPoolingOp(py::module &m) { :param kernel_dims: Size of the kernel applied during pooling. :type kernel_dims: List[int] + :param dilations: The dilation value along each spatial axis of filter. + :type dilations: List[int] + :param ceil_mode: Whether to use ceil or floor when calculating the output dimensions. + :type ceil_mode: bool :param name: Name of the operator node (optional). :type name: str :param stride_dims: Stride dimensions for the pooling operation. diff --git a/python_binding/operator/pybind_Equal.cpp b/python_binding/operator/pybind_Equal.cpp new file mode 100644 index 0000000000000000000000000000000000000000..ef4488edce3c096c368f43a07de6b0d65f368013 --- /dev/null +++ b/python_binding/operator/pybind_Equal.cpp @@ -0,0 +1,34 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <pybind11/pybind11.h> + +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Equal.hpp" +#include "aidge/operator/OperatorTensor.hpp" + +namespace py = pybind11; +namespace Aidge { + +void init_Equal(py::module& m) { + py::class_<Equal_Op, std::shared_ptr<Equal_Op>, OperatorTensor>(m, "Equal_Op", py::multiple_inheritance(), + R"mydelimiter( Initialize an Equal operator.)mydelimiter") + .def(py::init<>()) + .def_static("get_inputs_name", &Equal_Op::getInputsName) + .def_static("get_outputs_name", &Equal_Op::getOutputsName); + declare_registrable<Equal_Op>(m, "EqualOp"); + m.def("Equal", &Equal, py::arg("name") = "", + R"mydelimiter( + Initialize a node containing an Equal operator. + :param name : name of the node. + )mydelimiter"); +} +} // namespace Aidge diff --git a/python_binding/operator/pybind_Flatten.cpp b/python_binding/operator/pybind_Flatten.cpp new file mode 100644 index 0000000000000000000000000000000000000000..899e5d7758d6e4737f89b4308872bb0926f1f98f --- /dev/null +++ b/python_binding/operator/pybind_Flatten.cpp @@ -0,0 +1,50 @@ +/******************************************************************************** + * Copyright (c) 2023 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <memory> +#include <pybind11/pybind11.h> +#include <string> +#include <vector> + +#include "aidge/operator/OperatorTensor.hpp" +#include "aidge/operator/Flatten.hpp" +#include "aidge/utils/Attributes.hpp" +#include "aidge/utils/Types.h" + +namespace py = pybind11; +namespace Aidge { + +void init_Flatten(py::module &m) { + py::class_<Flatten_Op, std::shared_ptr<Flatten_Op>, OperatorTensor>( + m, "FlattenOp", py::multiple_inheritance(), + R"mydelimiter( + Initialize flatten operator + :param axis : up to which input dimensions (exclusive) should be flattened to the outer dimension of the output + between [-r;r-1] with r = input_tensor.nbDims() + :type axes : :py:class: List[Int] + )mydelimiter") + .def("get_inputs_name", &Flatten_Op::getInputsName) + .def("get_outputs_name", &Flatten_Op::getOutputsName) + .def("axis", &Flatten_Op::axis); + // Here we bind the constructor of the Flatten Node. We add an argument + // for each attribute of the operator (in here we only have 'axis') and + // the last argument is the node's name. + m.def("Flatten", &Flatten, py::arg("axis") = 1, + py::arg("name") = "", + R"mydelimiter( + Initialize a node containing a flatten operator. + :param axis : up to which input dimensions (exclusive) should be flattened to the outer dimension of the output + between [-r;r-1] with r = input_tensor.nbDims() + :type axes : :py:class: List[Int] + :param name : name of the node. +)mydelimiter"); +} +} // namespace Aidge diff --git a/python_binding/operator/pybind_MaxPooling.cpp b/python_binding/operator/pybind_MaxPooling.cpp index 8834625a8b5790e146861274cf82d0608b637148..bdbc1edd3cba67f6a7d703692a50f33355a8909e 100644 --- a/python_binding/operator/pybind_MaxPooling.cpp +++ b/python_binding/operator/pybind_MaxPooling.cpp @@ -37,14 +37,18 @@ template <DimIdx_t DIM> void declare_MaxPoolingOp(py::module &m) { :type kernel_dims: List[int] :param stride_dims: The stride (step size) to move the kernel over the input. :type stride_dims: List[int] + :param dilations: The dilation value along each spatial axis of filter. + :type dilations: List[int] :param ceil_mode: Whether to use ceil or floor when calculating the output dimensions. :type ceil_mode: bool )mydelimiter") .def(py::init<const std::array<DimSize_t, DIM> &, + const std::array<DimSize_t, DIM> &, const std::array<DimSize_t, DIM> &, bool>(), py::arg("kernel_dims"), py::arg("stride_dims"), + py::arg("dilations"), py::arg("ceil_mode")) .def_static("get_inputs_name", &MaxPooling_Op<DIM>::getInputsName) .def_static("get_outputs_name", &MaxPooling_Op<DIM>::getOutputsName) @@ -55,14 +59,17 @@ template <DimIdx_t DIM> void declare_MaxPoolingOp(py::module &m) { m.def(("MaxPooling" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims, const std::string& name, const std::vector<DimSize_t> &stride_dims, + const std::vector<DimSize_t> &dilations, bool ceil_mode) { AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); + AIDGE_ASSERT(dilations.size() == DIM, "dilations size [{}] does not match DIM [{}]", dilations.size(), DIM); - return MaxPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), ceil_mode); + return MaxPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilations.begin()), ceil_mode); }, py::arg("kernel_dims"), py::arg("name") = "", py::arg("stride_dims") = std::vector<DimSize_t>(DIM, 1), + py::arg("dilations") = std::vector<DimSize_t>(DIM, 1), py::arg("ceil_mode") = false, R"mydelimiter( Initialize a node containing a MaxPooling operator. @@ -75,6 +82,8 @@ template <DimIdx_t DIM> void declare_MaxPoolingOp(py::module &m) { :type kernel_dims: List[int] :param stride_dims: The stride (step size) to move the kernel over the input. :type stride_dims: List[int] + :param dilations: The dilation value along each spatial axis of filter. + :type dilations: List[int] :param ceil_mode: Whether to use ceil or floor when calculating the output dimensions. :type ceil_mode: bool :param name: Name of the node (optional). diff --git a/python_binding/operator/pybind_MetaOperatorDefs.cpp b/python_binding/operator/pybind_MetaOperatorDefs.cpp index 35f3d21341fbb529d692a71e597c3b2b76c8426e..8058cd2a23c6c1bf91b44b347af9df57aac0635a 100644 --- a/python_binding/operator/pybind_MetaOperatorDefs.cpp +++ b/python_binding/operator/pybind_MetaOperatorDefs.cpp @@ -46,7 +46,33 @@ template <DimIdx_t DIM> void declare_PaddedConvOp(py::module &m) { py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1), - py::arg("no_bias")= false); + py::arg("no_bias")= false, + R"mydelimiter( + Initialize a node containing a Padded Convolution operator. + + This operator performs a convolution operation with explicit padding. It applies a + kernel filter over an input tensor with specified stride and dilation settings. + + :param in_channels: Number of input channels. + :type in_channels: int + :param out_channels: Number of output channels. + :type out_channels: int + :param kernel_dims: The size of the convolutional kernel for each dimension. + :type kernel_dims: List[int] + :param stride_dims: The stride (step size) for kernel movement. + :type stride_dims: List[int] + :param padding_dims: Explicit padding to apply before convolution. + :type padding_dims: List[int] + :param dilation_dims: The dilation factor for kernel spacing. + :type dilation_dims: List[int] + :param no_bias: Whether to disable bias addition in the convolution. + :type no_bias: bool + :param name: Name of the node (optional). + :type name: str + :return: A node containing the Padded Convolution operator. + :rtype: :py:class:`PaddedConvOp` + )mydelimiter"); + m.def(("PaddedConv" + std::to_string(DIM) + "DOp").c_str(), []( const std::vector<DimSize_t>& kernel_dims, const std::vector<DimSize_t> &stride_dims, @@ -62,9 +88,28 @@ template <DimIdx_t DIM> void declare_PaddedConvOp(py::module &m) { }, py::arg("kernel_dims"), py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), - py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1)); + py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1), + R"mydelimiter( + Initialize a Padded Convolution operator. + + This function defines a convolution operation that includes explicit padding before + applying the kernel. The padding allows control over output dimensions while maintaining + receptive field properties. + + :param kernel_dims: The size of the convolutional kernel for each dimension. + :type kernel_dims: List[int] + :param stride_dims: The stride (step size) for kernel movement. + :type stride_dims: List[int] + :param padding_dims: Padding applied before convolution. + :type padding_dims: List[int] + :param dilation_dims: The dilation factor for kernel spacing. + :type dilation_dims: List[int] + :return: A Padded Convolution operator. + :rtype: :py:class:`PaddedConvOp` + )mydelimiter"); } + template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) { m.def(("PaddedConvDepthWise" + std::to_string(DIM) + "D").c_str(), [](const DimSize_t nb_channels, const std::vector<DimSize_t>& kernel_dims, @@ -86,7 +131,32 @@ template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) { py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1), - py::arg("no_bias") = false); + py::arg("no_bias") = false, + R"mydelimiter( + Initialize a node containing a Depthwise Padded Convolution operator. + + This operator performs a depthwise convolution operation, where each input channel is + convolved separately with a different kernel. The operation includes explicit padding, + stride control, and dilation options. + + :param nb_channels: Number of input channels (also the number of output channels since depthwise convolution does not mix channels). + :type nb_channels: int + :param kernel_dims: The size of the convolutional kernel for each dimension. + :type kernel_dims: List[int] + :param stride_dims: The stride (step size) for kernel movement. + :type stride_dims: List[int] + :param padding_dims: Explicit padding to apply before convolution. + :type padding_dims: List[int] + :param dilation_dims: The dilation factor for kernel spacing. + :type dilation_dims: List[int] + :param no_bias: Whether to disable bias addition in the convolution. + :type no_bias: bool + :param name: Name of the node (optional). + :type name: str + :return: A node containing the Depthwise Padded Convolution operator. + :rtype: :py:class:`PaddedConvDepthWiseOp` + )mydelimiter"); + m.def(("PaddedConvDepthWise" + std::to_string(DIM) + "DOp").c_str(), []( const std::vector<DimSize_t>& kernel_dims, const std::vector<DimSize_t> &stride_dims, @@ -102,90 +172,258 @@ template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) { }, py::arg("kernel_dims"), py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), - py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1)); + py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1), + R"mydelimiter( + Initialize a Depthwise Padded Convolution operator. + + This function defines a depthwise convolution operation that includes explicit padding + before applying the kernel. Depthwise convolution applies a separate filter to each + input channel, preserving channel independence. + :param kernel_dims: The size of the convolutional kernel for each dimension. + :type kernel_dims: List[int] + :param stride_dims: The stride (step size) for kernel movement. + :type stride_dims: List[int] + :param padding_dims: Padding applied before convolution. + :type padding_dims: List[int] + :param dilation_dims: The dilation factor for kernel spacing. + :type dilation_dims: List[int] + :return: A Depthwise Padded Convolution operator. + :rtype: :py:class:`PaddedConvDepthWiseOp` + )mydelimiter"); } template <DimIdx_t DIM> void declare_PaddedAvgPoolingOp(py::module &m) { m.def(("PaddedAvgPooling" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims, const std::string& name, const std::vector<DimSize_t> &stride_dims, - const std::vector<DimSize_t> &padding_dims) + const std::vector<DimSize_t> &dilations, + const std::vector<DimSize_t> &padding_dims, + bool ceil_mode) { AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); + AIDGE_ASSERT(dilations.size() == DIM, "dilations size [{}] does not match DIM [{}]", dilations.size(), DIM); AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM); - return PaddedAvgPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin())); + return PaddedAvgPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilations.begin()), to_array<2*DIM>(padding_dims.begin()), ceil_mode); }, py::arg("kernel_dims"), py::arg("name") = "", py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), - py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0)); + py::arg("dilations") = std::vector<DimSize_t>(DIM,1), + py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), + py::arg("ceil_mode") = false, + R"mydelimiter( + Initialize a node containing a Padded Average Pooling operator. + + This operator performs an average pooling operation with explicit padding. The output value + is computed as the average of input values within a defined kernel window. + + :param kernel_dims: The size of the pooling kernel for each dimension. + :type kernel_dims: List[int] + :param stride_dims: The stride (step size) for kernel movement. + :type stride_dims: List[int] + :param dilations: The dilation factor for the kernel, which increases the spacing between elements. + :type dilations: List[int] + :param padding_dims: Explicit padding to apply before pooling. + :type padding_dims: List[int] + :param ceil_mode: If set to True, the output shape is computed using ceil instead of floor. + :type ceil_mode: bool + :param name: Name of the node (optional). + :type name: str + :return: A node containing the Padded Average Pooling operator. + :rtype: :py:class:`PaddedAvgPoolingOp` + )mydelimiter"); + m.def(("PaddedAvgPooling" + std::to_string(DIM) + "DOp").c_str(), [](const std::vector<DimSize_t>& kernel_dims, const std::vector<DimSize_t> &stride_dims, - const std::vector<DimSize_t> &padding_dims) + const std::vector<DimSize_t> &dilations, + const std::vector<DimSize_t> &padding_dims, + bool ceil_mode) { AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); + AIDGE_ASSERT(dilations.size() == DIM, "dilations size [{}] does not match DIM [{}]", dilations.size(), DIM); AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM); - return PaddedAvgPooling_Op<DIM>(to_array<DIM>(kernel_dims.begin()), to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin())); + return PaddedAvgPooling_Op<DIM>(to_array<DIM>(kernel_dims.begin()), to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilations.begin()), to_array<2*DIM>(padding_dims.begin()), ceil_mode); }, py::arg("kernel_dims"), py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), - py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0)); + py::arg("dilations") = std::vector<DimSize_t>(DIM,1), + py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), + py::arg("ceil_mode") = false, + R"mydelimiter( + Initialize a Padded Average Pooling operator. + + This function defines an average pooling operation with explicit padding before pooling is applied. + The operation computes the average of the elements inside each kernel window. + + :param kernel_dims: The size of the pooling kernel for each dimension. + :type kernel_dims: List[int] + :param stride_dims: The stride (step size) for kernel movement. + :type stride_dims: List[int] + :param dilations: The dilation factor for the kernel, which increases the spacing between elements. + :type dilations: List[int] + :param padding_dims: Padding applied before pooling. + :type padding_dims: List[int] + :param ceil_mode: If set to True, the output shape is computed using ceil instead of floor. + :type ceil_mode: bool + :return: A Padded Average Pooling operator. + :rtype: :py:class:`PaddedAvgPoolingOp` + )mydelimiter"); } template <DimIdx_t DIM> void declare_PaddedMaxPoolingOp(py::module &m) { m.def(("PaddedMaxPooling" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims, const std::string& name, const std::vector<DimSize_t> &stride_dims, + const std::vector<DimSize_t> &dilations, const std::vector<DimSize_t> &padding_dims, bool ceil_mode) { AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); + AIDGE_ASSERT(dilations.size() == DIM, "dilations size [{}] does not match DIM [{}]", dilations.size(), DIM); AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM); - return PaddedMaxPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), ceil_mode); + return PaddedMaxPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilations.begin()), to_array<2*DIM>(padding_dims.begin()), ceil_mode); }, py::arg("kernel_dims"), py::arg("name") = "", py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), + py::arg("dilations") = std::vector<DimSize_t>(DIM,1), py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), - py::arg("ceil_mode") = false); + py::arg("ceil_mode") = false, + R"mydelimiter( + Initialize a node containing a Padded Max Pooling operator. + + This operator performs a max pooling operation with explicit padding before pooling is applied. + The output value is computed as the maximum of input values within a defined kernel window. + + :param kernel_dims: The size of the pooling kernel for each dimension. + :type kernel_dims: List[int] + :param stride_dims: The stride (step size) for kernel movement. + :type stride_dims: List[int] + :param dilations: The dilation factor for the kernel, which increases the spacing between elements. + :type dilations: List[int] + :param padding_dims: Explicit padding to apply before pooling. + :type padding_dims: List[int] + :param ceil_mode: If set to True, the output shape is computed using ceil instead of floor. + :type ceil_mode: bool + :param name: Name of the node (optional). + :type name: str + :return: A node containing the Padded Max Pooling operator. + :rtype: :py:class:`PaddedMaxPoolingOp` + )mydelimiter"); + m.def(("PaddedMaxPooling" + std::to_string(DIM) + "DOp").c_str(), [](const std::vector<DimSize_t>& kernel_dims, const std::vector<DimSize_t> &stride_dims, + const std::vector<DimSize_t> &dilations, const std::vector<DimSize_t> &padding_dims, bool ceil_mode) { AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [{}] does not match DIM [{}]", kernel_dims.size(), DIM); AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [{}] does not match DIM [{}]", stride_dims.size(), DIM); + AIDGE_ASSERT(dilations.size() == DIM, "dilations size [{}] does not match DIM [{}]", dilations.size(), DIM); AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [{}] does not match DIM [{}]", padding_dims.size(), 2*DIM); - return PaddedMaxPooling_Op<DIM>(to_array<DIM>(kernel_dims.begin()), to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), ceil_mode); + return PaddedMaxPooling_Op<DIM>(to_array<DIM>(kernel_dims.begin()), to_array<DIM>(stride_dims.begin()), to_array<DIM>(dilations.begin()), to_array<2*DIM>(padding_dims.begin()), ceil_mode); }, py::arg("kernel_dims"), py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1), + py::arg("dilations") = std::vector<DimSize_t>(DIM,1), py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0), - py::arg("ceil_mode") = false); + py::arg("ceil_mode") = false, + R"mydelimiter( + Initialize a Padded Max Pooling operator. + + This function defines a max pooling operation with explicit padding before pooling is applied. + The operation computes the maximum of the elements inside each kernel window. + :param kernel_dims: The size of the pooling kernel for each dimension. + :type kernel_dims: List[int] + :param stride_dims: The stride (step size) for kernel movement. + :type stride_dims: List[int] + :param dilations: The dilation factor for the kernel, which increases the spacing between elements. + :type dilations: List[int] + :param padding_dims: Padding applied before pooling. + :type padding_dims: List[int] + :param ceil_mode: If set to True, the output shape is computed using ceil instead of floor. + :type ceil_mode: bool + :return: A Padded Max Pooling operator. + :rtype: :py:class:`PaddedMaxPoolingOp` + )mydelimiter"); } + void declare_LSTMOp(py::module &m) { - m.def("LSTM", &LSTM, py::arg("in_channels"), + m.def("LSTM", &LSTM, + py::arg("in_channels"), py::arg("hidden_channels"), py::arg("seq_length"), py::arg("nobias") = false, - py::arg("name") = ""); + py::arg("name") = "", + R"mydelimiter( + Initialize a node containing an LSTM (Long Short-Term Memory) operator. + + The LSTM operator is a recurrent neural network (RNN) variant designed to model sequential data + while addressing the vanishing gradient problem. It includes gating mechanisms to control + information flow through time. + + :param in_channels: The number of input features per time step. + :type in_channels: int + :param hidden_channels: The number of hidden units in the LSTM. + :type hidden_channels: int + :param seq_length: The number of time steps in the input sequence. + :type seq_length: int + :param nobias: If set to True, no bias terms are included in the LSTM computation. + :type nobias: bool + :param name: Name of the node (optional). + :type name: str + :return: A node containing the LSTM operator. + :rtype: :py:class:`LSTM` + )mydelimiter"); + m.def("LSTMOp", &LSTM_Op, py::arg("seq_length"), - py::arg("name") = ""); + py::arg("name") = "", + R"mydelimiter( + Initialize an LSTM operation. + + This function sets up an LSTM operator to process sequential data. The LSTM maintains hidden + states over time steps, allowing it to learn long-range dependencies. + + :param seq_length: The length of the input sequence. + :type seq_length: int + :param name: Name of the node (optional). + :type name: str + :return: An LSTM operator. + :rtype: :py:class:`LSTMOp` + )mydelimiter"); } + void declare_LeakyOp(py::module &m) { m.def("Leaky", &Leaky, py::arg("nb_timesteps"), py::arg("beta"), py::arg("threshold") = 1.0, - py::arg("name") = ""); + py::arg("name") = "", + R"mydelimiter( + Initialize a Leaky neuron operator. + + The Leaky operator introduces a decay factor, allowing neuron states to "leak" over time instead of resetting + abruptly. This helps in maintaining temporal memory. + + :param nb_timesteps: The number of time steps for the operation. + :type nb_timesteps: int + :param beta: The leakage factor controlling decay over time. + :type beta: float + :param threshold: The activation threshold (default is 1.0). + :type threshold: float + :param name: Name of the node (optional). + :type name: str + :return: A node containing the Leaky operator. + :rtype: :py:class:`Leaky` + )mydelimiter"); } void init_MetaOperatorDefs(py::module &m) { diff --git a/python_binding/pybind_core.cpp b/python_binding/pybind_core.cpp index cc6f0bf2502027fea467b9db39561769fcebbd2b..ef1111b39a2f6fff3153dfb7441543ff5c3956c2 100644 --- a/python_binding/pybind_core.cpp +++ b/python_binding/pybind_core.cpp @@ -50,9 +50,11 @@ void init_Conv(py::module&); void init_ConvDepthWise(py::module&); void init_DepthToSpace(py::module&); void init_Div(py::module&); +void init_Equal(py::module&); void init_Erf(py::module&); void init_Expand(py::module&); void init_FC(py::module&); +void init_Flatten(py::module&); void init_Gather(py::module&); void init_GenericOperator(py::module&); void init_GlobalAveragePooling(py::module&); @@ -149,9 +151,11 @@ void init_Aidge(py::module& m) { init_ConstantOfShape(m); init_DepthToSpace(m); init_Div(m); + init_Equal(m); init_Erf(m); init_Expand(m); init_FC(m); + init_Flatten(m); init_Gather(m); init_GenericOperator(m); init_GlobalAveragePooling(m); diff --git a/src/operator/AvgPooling.cpp b/src/operator/AvgPooling.cpp index 78266e3fb391d6f33da9e65b2125dd57885ac89e..79341687c6190505ca41eafee3c1ee24f7b6088c 100644 --- a/src/operator/AvgPooling.cpp +++ b/src/operator/AvgPooling.cpp @@ -47,17 +47,28 @@ std::shared_ptr<Aidge::Operator> Aidge::AvgPooling_Op<DIM>::clone() const { template <Aidge::DimIdx_t DIM> bool Aidge::AvgPooling_Op<DIM>::forwardDims(bool /*allowDataDependency*/) { if (inputsAssociated()) { - std::array<DimSize_t, DIM + 2> outputDims; + std::array<DimSize_t, DIM + 2> outputDims{}; const std::array<DimSize_t, DIM + 2> inputDims(getInput(0)->template dims<DIM+2>()); - outputDims[0] = inputDims[0]; - outputDims[1] = inputDims[1]; - for (std::size_t dim = 0; dim < mAttributes->template getAttr<AvgPoolingAttr::KernelDims>().size() ; ++dim) { + std::function<float(float)> roundingFunction; + if (mAttributes->template getAttr<AvgPoolingAttr::CeilMode>()) { + roundingFunction = [](float x) { return std::ceil(x); }; + } else { + roundingFunction = [](float x) { return std::floor(x); }; + } + + for (std::size_t dim = 0; dim < mAttributes->template getAttr<AvgPoolingAttr::KernelDims>().size(); ++dim) { + const auto kernelDim = mAttributes->template getAttr<AvgPoolingAttr::KernelDims>()[dim]; + const auto strideDim = mAttributes->template getAttr<AvgPoolingAttr::StrideDims>()[dim]; + const auto dilationDim = mAttributes->template getAttr<AvgPoolingAttr::Dilations>()[dim]; + outputDims[dim+2] = 1 + static_cast<DimSize_t>( - std::floor(static_cast<float>(inputDims[dim+2] - - mAttributes->template getAttr<AvgPoolingAttr::KernelDims>()[dim]) / - static_cast<float>(mAttributes->template getAttr<AvgPoolingAttr::StrideDims>()[dim]))); + roundingFunction(static_cast<float>(inputDims[dim+2] - + (kernelDim - 1) * dilationDim - 1) / + static_cast<float>(strideDim))); } + outputDims[1] = inputDims[1]; + outputDims[0] = inputDims[0]; getOutput(0)->resize(outputDims); return true; } @@ -96,7 +107,8 @@ Aidge::AvgPooling_Op<DIM>::computeReceptiveField(const std::vector<Aidge::DimSiz inputDims.push_back((outputDims[2+static_cast<std::size_t>(i)] - 1) * mAttributes->template getAttr<AvgPoolingAttr::StrideDims>()[static_cast<std::size_t>(i)] + 1 - + (mAttributes->template getAttr<AvgPoolingAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1)); + + (mAttributes->template getAttr<AvgPoolingAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1) + * mAttributes->template getAttr<AvgPoolingAttr::Dilations>()[static_cast<std::size_t>(i)]); inputIdxDims[2+i] *= mAttributes->template getAttr<AvgPoolingAttr::StrideDims>()[static_cast<std::size_t>(i)]; } std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<DimSize_t>>> res; @@ -128,10 +140,12 @@ template class Aidge::AvgPooling_Op<4>; template <std::array<Aidge::DimSize_t, 1>::size_type DIM> std::shared_ptr<Aidge::Node> Aidge::AvgPooling(const std::array<Aidge::DimSize_t, DIM> &kernel_dims, const std::string& name, - const std::array<Aidge::DimSize_t, DIM> &stride_dims) { + const std::array<Aidge::DimSize_t, DIM> &stride_dims, + const std::array<Aidge::DimSize_t, DIM> &dilations, + bool ceil_mode) { AIDGE_ASSERT(DIM<=MaxDim, "Too many kernel dimensions required by {}, not supported", AvgPooling_Op<DIM>::Type); - return std::make_shared<Node>(std::make_shared<AvgPooling_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims), name); + return std::make_shared<Node>(std::make_shared<AvgPooling_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, dilations, ceil_mode), name); } -template std::shared_ptr<Aidge::Node> Aidge::AvgPooling<1>(const std::array<Aidge::DimSize_t, 1>&, const std::string&, const std::array<Aidge::DimSize_t, 1>&); -template std::shared_ptr<Aidge::Node> Aidge::AvgPooling<2>(const std::array<Aidge::DimSize_t, 2>&, const std::string&, const std::array<Aidge::DimSize_t, 2>&); -template std::shared_ptr<Aidge::Node> Aidge::AvgPooling<3>(const std::array<Aidge::DimSize_t, 3>&, const std::string&, const std::array<Aidge::DimSize_t, 3>&); +template std::shared_ptr<Aidge::Node> Aidge::AvgPooling<1>(const std::array<Aidge::DimSize_t, 1>&, const std::string&, const std::array<Aidge::DimSize_t, 1>&, const std::array<Aidge::DimSize_t, 1>&, bool); +template std::shared_ptr<Aidge::Node> Aidge::AvgPooling<2>(const std::array<Aidge::DimSize_t, 2>&, const std::string&, const std::array<Aidge::DimSize_t, 2>&, const std::array<Aidge::DimSize_t, 2>&, bool); +template std::shared_ptr<Aidge::Node> Aidge::AvgPooling<3>(const std::array<Aidge::DimSize_t, 3>&, const std::string&, const std::array<Aidge::DimSize_t, 3>&, const std::array<Aidge::DimSize_t, 3>&, bool); diff --git a/src/operator/Equal.cpp b/src/operator/Equal.cpp new file mode 100644 index 0000000000000000000000000000000000000000..cc0fcd984062baeac3da47d03a3d64cda63eada3 --- /dev/null +++ b/src/operator/Equal.cpp @@ -0,0 +1,62 @@ +/******************************************************************************** + * Copyright (c) 2024 CEA-List + * + * This program and the accompanying materials are made available under the + * terms of the Eclipse Public License 2.0 which is available at + * http://www.eclipse.org/legal/epl-2.0. + * + * SPDX-License-Identifier: EPL-2.0 + * + ********************************************************************************/ + +#include <cstddef> // std::size_t +#include <memory> +#include <stdexcept> // std::runtime_error +#include <string> +#include <vector> + +#include "aidge/backend/OperatorImpl.hpp" +#include "aidge/data/Tensor.hpp" +#include "aidge/operator/Equal.hpp" +#include "aidge/utils/ErrorHandling.hpp" +#include "aidge/utils/Types.h" + +const std::string Aidge::Equal_Op::Type = "Equal"; + +bool Aidge::Equal_Op::forwardDims(bool /*allowDataDependency*/) { + if (inputsAssociated()) { + const std::vector<std::size_t>& inputsDims0 = getInput(0)->dims(); + const std::vector<std::size_t>& inputsDims1 = getInput(1)->dims(); + + std::vector<std::size_t> outDims = (inputsDims0.size() >= inputsDims1.size()) ? inputsDims0 : inputsDims1; + const std::vector<std::size_t>& lowDims = (inputsDims0.size() < inputsDims1.size()) ? inputsDims0 : inputsDims1; + + std::size_t out_id = outDims.size() - 1; + std::size_t low_id = lowDims.size() - 1; + std::size_t i = 0; + while (i++ < lowDims.size()) { + if (outDims[out_id] == 1) { + outDims[out_id] = lowDims[low_id]; + } + else if ((lowDims[low_id] != 1) && (lowDims[low_id] != outDims[out_id])) { + AIDGE_THROW_OR_ABORT(std::runtime_error, "Incompatible Tensor shape for Equal Operation: {} for input#0 vs {} for input#1", + inputsDims0, inputsDims1); + } + --out_id; + --low_id; + } + mOutputs[0]->resize(outDims); + return true; + } + + return false; +} + +void Aidge::Equal_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) { + SET_IMPL_MACRO(Equal_Op, *this, name); + mOutputs[0]->setBackend(name, device); +} + +std::set<std::string> Aidge::Equal_Op::getAvailableBackends() const { + return Registrar<Equal_Op>::getKeys(); +} diff --git a/src/operator/MaxPooling.cpp b/src/operator/MaxPooling.cpp index 535b53749caeffca34eb0bf541f06dee30a3a333..afd8e00cc07b9ecaf28fcb7d7b28fa3422446429 100644 --- a/src/operator/MaxPooling.cpp +++ b/src/operator/MaxPooling.cpp @@ -25,11 +25,13 @@ const std::string Aidge::MaxPooling_Op<DIM>::Type = "MaxPooling" + std::to_strin template <Aidge::DimIdx_t DIM> Aidge::MaxPooling_Op<DIM>::MaxPooling_Op(const std::array<Aidge::DimSize_t, DIM> &kernel_dims, const std::array<Aidge::DimSize_t, DIM> &stride_dims, + const std::array<Aidge::DimSize_t, DIM> &dilations, bool ceil_mode) : OperatorTensor(Type, {InputCategory::Data}, 1), mAttributes(std::make_shared<Attributes_>( attr<MaxPoolingAttr::StrideDims>(stride_dims), attr<MaxPoolingAttr::KernelDims>(kernel_dims), + attr<MaxPoolingAttr::Dilations>(dilations), attr<MaxPoolingAttr::CeilMode>(ceil_mode))) {} @@ -63,11 +65,15 @@ bool Aidge::MaxPooling_Op<DIM>::forwardDims(bool /*allowDataDependency*/) { roundingFunction = [](float x) { return std::floor(x); }; } - for (std::size_t dim = 0; dim < mAttributes->template getAttr<MaxPoolingAttr::KernelDims>().size() ; ++dim) { + for (std::size_t dim = 0; dim < mAttributes->template getAttr<MaxPoolingAttr::KernelDims>().size(); ++dim) { + const auto kernelDim = mAttributes->template getAttr<MaxPoolingAttr::KernelDims>()[dim]; + const auto strideDim = mAttributes->template getAttr<MaxPoolingAttr::StrideDims>()[dim]; + const auto dilationDim = mAttributes->template getAttr<MaxPoolingAttr::Dilations>()[dim]; + outputDims[dim+2] = 1 + static_cast<DimSize_t>( - roundingFunction(static_cast<float>(inputDims[dim+2] - - mAttributes->template getAttr<MaxPoolingAttr::KernelDims>()[dim]) / - static_cast<float>(mAttributes->template getAttr<MaxPoolingAttr::StrideDims>()[dim]))); + roundingFunction(static_cast<float>(inputDims[dim+2] - + (kernelDim - 1) * dilationDim - 1) / + static_cast<float>(strideDim))); } outputDims[1] = inputDims[1]; outputDims[0] = inputDims[0]; @@ -98,12 +104,13 @@ template <std::array<Aidge::DimSize_t, 1>::size_type DIM> std::shared_ptr<Aidge::Node> Aidge::MaxPooling(const std::array<Aidge::DimSize_t, DIM> &kernel_dims, const std::string& name, const std::array<Aidge::DimSize_t, DIM> &stride_dims, + const std::array<Aidge::DimSize_t, DIM> &dilations, bool ceil_mode) { static_assert(DIM<=MaxDim,"Too many kernel dimensions required by MaxPooling, not supported"); - return std::make_shared<Node>(std::make_shared<MaxPooling_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, ceil_mode), name); + return std::make_shared<Node>(std::make_shared<MaxPooling_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, dilations, ceil_mode), name); } -template std::shared_ptr<Aidge::Node> Aidge::MaxPooling<1>(const std::array<Aidge::DimSize_t, 1>&, const std::string&, const std::array<Aidge::DimSize_t, 1>&, bool); -template std::shared_ptr<Aidge::Node> Aidge::MaxPooling<2>(const std::array<Aidge::DimSize_t, 2>&, const std::string&, const std::array<Aidge::DimSize_t, 2>&, bool); -template std::shared_ptr<Aidge::Node> Aidge::MaxPooling<3>(const std::array<Aidge::DimSize_t, 3>&, const std::string&, const std::array<Aidge::DimSize_t, 3>&, bool); +template std::shared_ptr<Aidge::Node> Aidge::MaxPooling<1>(const std::array<Aidge::DimSize_t, 1>&, const std::string&, const std::array<Aidge::DimSize_t, 1>&, const std::array<Aidge::DimSize_t, 1>&, bool); +template std::shared_ptr<Aidge::Node> Aidge::MaxPooling<2>(const std::array<Aidge::DimSize_t, 2>&, const std::string&, const std::array<Aidge::DimSize_t, 2>&, const std::array<Aidge::DimSize_t, 2>&, bool); +template std::shared_ptr<Aidge::Node> Aidge::MaxPooling<3>(const std::array<Aidge::DimSize_t, 3>&, const std::string&, const std::array<Aidge::DimSize_t, 3>&, const std::array<Aidge::DimSize_t, 3>&, bool); diff --git a/src/operator/MetaOperatorDefs/PaddedAvgPooling.cpp b/src/operator/MetaOperatorDefs/PaddedAvgPooling.cpp index bcda67d0ce4c43e4936739affb9d681942062cb1..8b86c5512a60c29cfd198e027dc524c2970fc743 100644 --- a/src/operator/MetaOperatorDefs/PaddedAvgPooling.cpp +++ b/src/operator/MetaOperatorDefs/PaddedAvgPooling.cpp @@ -34,31 +34,35 @@ template <std::array<DimSize_t, 1>::size_type DIM> std::shared_ptr<Node> PaddedAvgPooling(const std::array<DimSize_t, DIM> &kernel_dims, const std::string& name, const std::array<DimSize_t, DIM> &stride_dims, - const std::array<DimSize_t, 2*DIM> &padding_dims) + const std::array<DimSize_t, DIM> &dilations, + const std::array<DimSize_t, 2*DIM> &padding_dims, + bool ceil_mode) { auto graph = Sequential({ Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : ""), - AvgPooling(kernel_dims, (!name.empty()) ? name + "_avgpooling" : "", stride_dims) + AvgPooling(kernel_dims, (!name.empty()) ? name + "_avgpooling" : "", stride_dims, dilations, ceil_mode) }); return MetaOperator(("PaddedAvgPooling" + std::to_string(DIM) + "D").c_str(), graph, {}, name); } -template std::shared_ptr<Node> PaddedAvgPooling<1>(const std::array<DimSize_t,1>&, const std::string&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&); -template std::shared_ptr<Node> PaddedAvgPooling<2>(const std::array<DimSize_t,2>&, const std::string&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&); +template std::shared_ptr<Node> PaddedAvgPooling<1>(const std::array<DimSize_t,1>&, const std::string&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&, bool); +template std::shared_ptr<Node> PaddedAvgPooling<2>(const std::array<DimSize_t,2>&, const std::string&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&, bool); // helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction template <DimSize_t DIM> std::shared_ptr<Node> PaddedAvgPooling(const DimSize_t (&kernel_dims)[DIM], const std::string& name, const std::array<DimSize_t, DIM> &stride_dims, - const std::array<DimSize_t, 2*DIM> &padding_dims) + const std::array<DimSize_t, DIM> &dilations, + const std::array<DimSize_t, 2*DIM> &padding_dims, + bool ceil_mode) { - return PaddedAvgPooling(to_array(kernel_dims), name, stride_dims, padding_dims); + return PaddedAvgPooling(to_array(kernel_dims), name, stride_dims, dilations, padding_dims, ceil_mode); } -template std::shared_ptr<Node> PaddedAvgPooling<1>(const DimSize_t (&kernel_dims)[1], const std::string&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&); -template std::shared_ptr<Node> PaddedAvgPooling<2>(const DimSize_t (&kernel_dims)[2], const std::string&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&); +template std::shared_ptr<Node> PaddedAvgPooling<1>(const DimSize_t (&kernel_dims)[1], const std::string&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&, bool); +template std::shared_ptr<Node> PaddedAvgPooling<2>(const DimSize_t (&kernel_dims)[2], const std::string&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&, bool); ////////////////////////////////// @@ -68,17 +72,19 @@ template std::shared_ptr<Node> PaddedAvgPooling<2>(const DimSize_t (&kernel_dims template <std::array<DimSize_t, 1>::size_type DIM> inline std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims, const std::array<DimSize_t, DIM> &stride_dims, - const std::array<DimSize_t, 2*DIM> &padding_dims) + const std::array<DimSize_t, DIM> &dilations, + const std::array<DimSize_t, 2*DIM> &padding_dims, + bool ceil_mode) { auto graph = Sequential({ Pad<DIM>(padding_dims, ""), - AvgPooling(kernel_dims, "", stride_dims) + AvgPooling(kernel_dims, "", stride_dims, dilations, ceil_mode) }); return std::make_shared<MetaOperator_Op>(("PaddedAvgPooling" + std::to_string(DIM) + "D").c_str(), graph); } -template std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op<1>(const std::array<DimSize_t,1>&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&); -template std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op<2>(const std::array<DimSize_t,2>&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&); +template std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op<1>(const std::array<DimSize_t,1>&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,1>&, const std::array<DimSize_t,2>&, bool); +template std::shared_ptr<MetaOperator_Op> PaddedAvgPooling_Op<2>(const std::array<DimSize_t,2>&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,2>&, const std::array<DimSize_t,4>&, bool); } // namespace Aidge