Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
aidge_export_cpp
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Eclipse Projects
aidge
aidge_export_cpp
Commits
96195252
Commit
96195252
authored
4 weeks ago
by
Axel Farrugia
Browse files
Options
Downloads
Patches
Plain Diff
[Chore] Clean unused code
parent
ea5961d0
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/export_ResNet18/resnet18.py
+8
-78
8 additions, 78 deletions
examples/export_ResNet18/resnet18.py
with
8 additions
and
78 deletions
examples/export_ResNet18/resnet18.py
+
8
−
78
View file @
96195252
...
...
@@ -149,7 +149,10 @@ FOLD_GRAPH = True
DEV_MODE
=
args
.
dev
AIDGE_CMP
=
args
.
aidge_cmp
IMAGENET_PATH
=
"
/database2/ILSVRC2012/val
"
# Search for ILSVRC2012
### Add your paths here ###
IMAGENET_PATH
=
"
/database/ILSVRC2012/val
"
# Look for ILSVRC2012/val
VAL_PATH
=
"
/database/ILSVRC2012/val.txt
"
# File containing labels of image of val folder (Look for val.txt)
###########################
def
print_cfg
():
print
(
'
\n
RNG_SEED =
'
,
RNG_SEED
)
...
...
@@ -164,7 +167,7 @@ def print_cfg():
print
(
'
TARGET_TYPE =
'
,
TARGET_TYPE
)
print
(
'
FOLD_GRAPH =
'
,
FOLD_GRAPH
)
print
(
'
USE_CUDA =
'
,
USE_CUDA
)
print
(
'
DEV_MODE =
'
,
DEV_MODE
)
print
(
'
DEV_MODE
=
'
,
DEV_MODE
)
print
(
'
ROUNDING =
'
,
ROUNDING
)
print_cfg
()
...
...
@@ -175,8 +178,6 @@ np.random.seed(RNG_SEED)
backend
=
"
cuda
"
if
USE_CUDA
else
"
cpu
"
VAL_PATH
=
"
/database2/ILSVRC2012/val.txt
"
# File containing labels of image of val folder
image_label_pairs
=
[]
with
open
(
VAL_PATH
,
'
r
'
)
as
f
:
for
line
in
f
:
...
...
@@ -185,14 +186,10 @@ with open(VAL_PATH, 'r') as f:
image_name
,
label
=
parts
image_label_pairs
.
append
((
image_name
,
int
(
label
)))
#random.shuffle(image_label_pairs)
np
.
random
.
seed
(
RNG_SEED
)
#image_label_pairs = np.random.permutation(image_label_pairs).tolist()
NB_SELECT
=
max
(
NB_TEST
,
NB_CALIB
)
# Vérifie que NB_TEST et NB_CALIB sont fixés
NB_SELECT
=
max
(
NB_TEST
,
NB_CALIB
)
# Check that NB_TEST and NB_CALIB are fixed
selected_pairs
=
image_label_pairs
[:
NB_SELECT
]
#selected_pairs = image_label_pairs[:max(NB_TEST, NB_CALIB)]
# --------------------------------------------------------------
# CREATE THE SAMPLES
# --------------------------------------------------------------
...
...
@@ -222,10 +219,6 @@ for image_name, label in selected_pairs:
except
Exception
as
e
:
print
(
f
"
Error with image
{
image_path
}
:
{
e
}
"
)
#print(f"Number of loaded tensors: {len(tensors)}")
#for lbl, img_path in zip(labels, paths):
# print(f"Label: {lbl} -> Image Path: {img_path}")
backend
=
"
cuda
"
if
USE_CUDA
else
"
cpu
"
aidge_tensors
=
[]
for
tensor
in
tensors
:
...
...
@@ -343,13 +336,6 @@ Each time the graph has been change, it has to be reset.
Here some Quantizer and Cast nodes have been added.
"""
"""
[START Fix]
We need first to manually add an input tensor with the correct datatype,
as it is not automatically done in PTQ.
"""
# input_node = model.get_ordered_inputs()[0]
# input_node[0].get_operator().set_input(0,aidge_tensors[0])
"""
[END Fix]
"""
if
quantize_model
:
scheduler
.
reset_scheduling
()
...
...
@@ -357,17 +343,6 @@ if quantize_model:
# PERFORM THE EXAMPLE INFERENCES AGAIN
# --------------------------------------------------------------
#for node in model.get_input_nodes():
# if node.type() == "Pad2D":
# node.set_name("Pad2D_input")
#
#for node in model.get_nodes():
# if (node.type() == "Conv2D"):
# if node.get_parent(0).name() == "Pad2D_input":
# node.set_name("Conv2D_input")
model
.
save
(
"
post_ptq
"
)
if
(
DO_EXAMPLES
and
quantize_model
):
...
...
@@ -385,11 +360,6 @@ if (DO_EXAMPLES and quantize_model):
print
(
'
\n
MODEL ACCURACY =
'
,
accuracy
*
100
,
'
%
'
)
print
(
'
\n
QUANTIZED ACCURACY =
'
,
quant_accuracy
*
100
,
'
%
'
)
print
(
"
post ptq
"
)
# output_array = propagate(model, scheduler, aidge_tensors[0])
#model.log_outputs("log_outputs_post_ptq")
if
USE_CUDA
:
model
.
set_backend
(
"
cpu
"
)
for
aidge_tensor
in
aidge_tensors
:
...
...
@@ -531,19 +501,13 @@ for node in model.get_nodes():
# EXPORT THE MODEL
# --------------------------------------------------------------
model
.
save
(
"
exported_model
"
)
inputs_tensor
=
aidge_core
.
Tensor
(
np
.
array
(
aidge_tensors
[
0
]))
# print(np.array(inputs_tensor)[0])
inputs_tensor
.
set_data_format
(
aidge_core
.
dformat
.
nchw
)
inputs_tensor
.
set_data_format
(
aidge_core
.
dformat
.
nhwc
)
inputs_tensor
.
set_data_format
(
aidge_core
.
dformat
.
nchw
)
# Init the dataformat (default -> nchw)
inputs_tensor
.
set_data_format
(
aidge_core
.
dformat
.
nhwc
)
# Transpose the data (nchw -> nhwc)
if
args
.
dtype
==
"
int8
"
:
inputs_tensor
.
set_datatype
(
aidge_core
.
dtype
.
int8
)
#print(np.array(inputs_tensor)[0,:,:,:])
#inputs_tensor.cpy_transpose(inputs_tensor, aidge_core.get_permutation_mapping(aidge_core.dformat.nchw, aidge_core.dformat.nhwc))
# print(np.array(inputs_tensor)[0])
aidge_export_cpp
.
export
(
EXPORT_FOLDER
,
model
,
scheduler
,
...
...
@@ -551,37 +515,3 @@ aidge_export_cpp.export(EXPORT_FOLDER,
inputs_tensor
=
inputs_tensor
,
dev_mode
=
DEV_MODE
,
aidge_cmp
=
AIDGE_CMP
)
#
## --------------------------------------------------------------
## GENERATE LABELS AND INPUTS FOR EXAMPLE INFERENCE
## --------------------------------------------------------------
#
#input_label = np.array(labels).astype(np.int32).reshape(len(labels), 1)
#generate_input_file(export_folder=EXPORT_FOLDER + "/data",
# array_name="labels",
# tensor=aidge_core.Tensor(input_label))
#
#input_tensor = np.array(aidge_tensors[0:NB_TEST]).astype(np.int8).reshape(NB_TEST, 3, 224, 224)
#generate_input_file(export_folder=EXPORT_FOLDER + "/data",
# array_name="inputs",
# tensor=aidge_core.Tensor(input_tensor))
#
#
#if TEST_MODE:
# input_tensor = aidge_core.Tensor(input_tensor)
# input_tensor.set_data_format(aidge_core.dformat.nchw)
# input_tensor.cpy_transpose(input_tensor, aidge_core.get_permutation_mapping(aidge_core.dformat.nchw, aidge_core.dformat.nhwc))
# generate_input_file(export_folder=EXPORT_FOLDER + "/data",
# array_name="inputs_ref",
# tensor=input_tensor)
#
## --------------------------------------------------------------
## GENERATE DOCUMENTATION
## --------------------------------------------------------------
#
#"""
#Copy the corresponding README file into the generated export.
#"""
#
#generate_documentation(EXPORT_FOLDER, TEST_MODE)
#
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment