Skip to content
Snippets Groups Projects
Commit 96195252 authored by Axel Farrugia's avatar Axel Farrugia
Browse files

[Chore] Clean unused code

parent ea5961d0
No related branches found
No related tags found
No related merge requests found
......@@ -149,7 +149,10 @@ FOLD_GRAPH = True
DEV_MODE = args.dev
AIDGE_CMP = args.aidge_cmp
IMAGENET_PATH = "/database2/ILSVRC2012/val" # Search for ILSVRC2012
### Add your paths here ###
IMAGENET_PATH = "/database/ILSVRC2012/val" # Look for ILSVRC2012/val
VAL_PATH = "/database/ILSVRC2012/val.txt" # File containing labels of image of val folder (Look for val.txt)
###########################
def print_cfg():
print('\n RNG_SEED = ', RNG_SEED)
......@@ -164,7 +167,7 @@ def print_cfg():
print(' TARGET_TYPE = ', TARGET_TYPE)
print(' FOLD_GRAPH = ', FOLD_GRAPH)
print(' USE_CUDA = ', USE_CUDA)
print(' DEV_MODE = ', DEV_MODE)
print(' DEV_MODE = ', DEV_MODE)
print(' ROUNDING = ', ROUNDING)
print_cfg()
......@@ -175,8 +178,6 @@ np.random.seed(RNG_SEED)
backend = "cuda" if USE_CUDA else "cpu"
VAL_PATH = "/database2/ILSVRC2012/val.txt" # File containing labels of image of val folder
image_label_pairs = []
with open(VAL_PATH, 'r') as f:
for line in f:
......@@ -185,14 +186,10 @@ with open(VAL_PATH, 'r') as f:
image_name, label = parts
image_label_pairs.append((image_name, int(label)))
#random.shuffle(image_label_pairs)
np.random.seed(RNG_SEED)
#image_label_pairs = np.random.permutation(image_label_pairs).tolist()
NB_SELECT = max(NB_TEST, NB_CALIB) # Vérifie que NB_TEST et NB_CALIB sont fixés
NB_SELECT = max(NB_TEST, NB_CALIB) # Check that NB_TEST and NB_CALIB are fixed
selected_pairs = image_label_pairs[:NB_SELECT]
#selected_pairs = image_label_pairs[:max(NB_TEST, NB_CALIB)]
# --------------------------------------------------------------
# CREATE THE SAMPLES
# --------------------------------------------------------------
......@@ -222,10 +219,6 @@ for image_name, label in selected_pairs:
except Exception as e:
print(f"Error with image {image_path}: {e}")
#print(f"Number of loaded tensors: {len(tensors)}")
#for lbl, img_path in zip(labels, paths):
# print(f"Label: {lbl} -> Image Path: {img_path}")
backend = "cuda" if USE_CUDA else "cpu"
aidge_tensors = []
for tensor in tensors:
......@@ -343,13 +336,6 @@ Each time the graph has been change, it has to be reset.
Here some Quantizer and Cast nodes have been added.
"""
""" [START Fix]
We need first to manually add an input tensor with the correct datatype,
as it is not automatically done in PTQ.
"""
# input_node = model.get_ordered_inputs()[0]
# input_node[0].get_operator().set_input(0,aidge_tensors[0])
""" [END Fix]"""
if quantize_model:
scheduler.reset_scheduling()
......@@ -357,17 +343,6 @@ if quantize_model:
# PERFORM THE EXAMPLE INFERENCES AGAIN
# --------------------------------------------------------------
#for node in model.get_input_nodes():
# if node.type() == "Pad2D":
# node.set_name("Pad2D_input")
#
#for node in model.get_nodes():
# if (node.type() == "Conv2D"):
# if node.get_parent(0).name() == "Pad2D_input":
# node.set_name("Conv2D_input")
model.save("post_ptq")
if (DO_EXAMPLES and quantize_model):
......@@ -385,11 +360,6 @@ if (DO_EXAMPLES and quantize_model):
print('\n MODEL ACCURACY = ', accuracy * 100, '%')
print('\n QUANTIZED ACCURACY = ', quant_accuracy * 100, '%')
print("post ptq")
# output_array = propagate(model, scheduler, aidge_tensors[0])
#model.log_outputs("log_outputs_post_ptq")
if USE_CUDA:
model.set_backend("cpu")
for aidge_tensor in aidge_tensors:
......@@ -531,19 +501,13 @@ for node in model.get_nodes():
# EXPORT THE MODEL
# --------------------------------------------------------------
model.save("exported_model")
inputs_tensor = aidge_core.Tensor(np.array(aidge_tensors[0]))
# print(np.array(inputs_tensor)[0])
inputs_tensor.set_data_format(aidge_core.dformat.nchw)
inputs_tensor.set_data_format(aidge_core.dformat.nhwc)
inputs_tensor.set_data_format(aidge_core.dformat.nchw) # Init the dataformat (default -> nchw)
inputs_tensor.set_data_format(aidge_core.dformat.nhwc) # Transpose the data (nchw -> nhwc)
if args.dtype == "int8":
inputs_tensor.set_datatype(aidge_core.dtype.int8)
#print(np.array(inputs_tensor)[0,:,:,:])
#inputs_tensor.cpy_transpose(inputs_tensor, aidge_core.get_permutation_mapping(aidge_core.dformat.nchw, aidge_core.dformat.nhwc))
# print(np.array(inputs_tensor)[0])
aidge_export_cpp.export(EXPORT_FOLDER,
model,
scheduler,
......@@ -551,37 +515,3 @@ aidge_export_cpp.export(EXPORT_FOLDER,
inputs_tensor=inputs_tensor,
dev_mode = DEV_MODE,
aidge_cmp = AIDGE_CMP)
#
## --------------------------------------------------------------
## GENERATE LABELS AND INPUTS FOR EXAMPLE INFERENCE
## --------------------------------------------------------------
#
#input_label = np.array(labels).astype(np.int32).reshape(len(labels), 1)
#generate_input_file(export_folder=EXPORT_FOLDER + "/data",
# array_name="labels",
# tensor=aidge_core.Tensor(input_label))
#
#input_tensor = np.array(aidge_tensors[0:NB_TEST]).astype(np.int8).reshape(NB_TEST, 3, 224, 224)
#generate_input_file(export_folder=EXPORT_FOLDER + "/data",
# array_name="inputs",
# tensor=aidge_core.Tensor(input_tensor))
#
#
#if TEST_MODE:
# input_tensor = aidge_core.Tensor(input_tensor)
# input_tensor.set_data_format(aidge_core.dformat.nchw)
# input_tensor.cpy_transpose(input_tensor, aidge_core.get_permutation_mapping(aidge_core.dformat.nchw, aidge_core.dformat.nhwc))
# generate_input_file(export_folder=EXPORT_FOLDER + "/data",
# array_name="inputs_ref",
# tensor=input_tensor)
#
## --------------------------------------------------------------
## GENERATE DOCUMENTATION
## --------------------------------------------------------------
#
#"""
#Copy the corresponding README file into the generated export.
#"""
#
#generate_documentation(EXPORT_FOLDER, TEST_MODE)
#
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment