Skip to content
Snippets Groups Projects
Commit ea33f738 authored by Maxence Naud's avatar Maxence Naud
Browse files

Merge branch 'feat_140_add-operator-depthToSpace' into 'dev'

[Add] DepthToSpace Operator

See merge request !165
parents 2f0b5ba2 e27d64bd
No related branches found
No related tags found
2 merge requests!212Version 0.3.0,!165[Add] DepthToSpace Operator
Pipeline #53448 passed
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CORE_OPERATOR_DEPTHTOSPACE_H_
#define AIDGE_CORE_OPERATOR_DEPTHTOSPACE_H_
#include <array>
#include <memory>
#include <vector>
#include "aidge/graph/Node.hpp"
#include "aidge/operator/OperatorTensor.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/StaticAttributes.hpp"
#include "aidge/utils/Types.h"
namespace Aidge {
class DepthToSpace_OpImpl : public OperatorImpl {
public:
DepthToSpace_OpImpl(const Operator& op, const std::string& backend = ""): OperatorImpl(op, backend) {}
void forward() override;
};
enum class DepthToSpaceAttr { BlockSize, Mode };
class DepthToSpace_Op : public OperatorTensor,
public Registrable<DepthToSpace_Op,
std::string,
std::shared_ptr<OperatorImpl>(const DepthToSpace_Op &)> {
public:
static const std::string Type;
enum class Mode { DCR, CRD };
private:
using Attributes_ = StaticAttributes<DepthToSpaceAttr, std::uint32_t, Mode>;
template <DepthToSpaceAttr e>
using attr = typename Attributes_::template attr<e>;
const std::shared_ptr<Attributes_> mAttributes;
public:
DepthToSpace_Op() = delete;
DepthToSpace_Op(const std::uint32_t blockSize, const Mode mode = Mode::CRD);
/**
* @brief Copy-constructor. Copy the operator attributes and its output tensor(s),
* but not its input tensors (the new operator has no input associated).
* @param op Operator to copy.
*/
DepthToSpace_Op(const DepthToSpace_Op& op);
/**
* @brief Clone the operator using its copy-constructor.
* @see Operator::DepthToSpace_Op
*/
std::shared_ptr<Operator> clone() const override;
bool forwardDims(bool /*allowDataDependency*/ = false) override final;
void setBackend(const std::string &name, DeviceIdx_t device = 0) override final;
inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; }
inline std::uint32_t& blockSize() const { return mAttributes->template getAttr<DepthToSpaceAttr::BlockSize>(); }
inline Mode& mode() const { return mAttributes->template getAttr<DepthToSpaceAttr::Mode>(); }
static const std::vector<std::string> getInputsName() {
return {"data_input"};
}
static const std::vector<std::string> getOutputsName() {
return {"data_output"};
}
};
std::shared_ptr<Node> DepthToSpace(const std::uint32_t blockSize,
const DepthToSpace_Op::Mode mode = DepthToSpace_Op::Mode::CRD,
const std::string& name = "");
} // namespace Aidge
namespace {
template <>
const char *const EnumStrings<Aidge::DepthToSpaceAttr>::data[] = { "block_size", "mode" };
}
#endif //AIDGE_CORE_OPERATOR_DEPTHTOSPACE_H_
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/operator/DepthToSpace.hpp"
#include <array>
#include <cstddef> // std::size_t
#include <string>
#include <vector>
#include "aidge/data/Tensor.hpp"
#include "aidge/utils/ErrorHandling.hpp"
#include "aidge/utils/Types.h"
void Aidge::DepthToSpace_OpImpl::forward() {
const DepthToSpace_Op& op = dynamic_cast<const DepthToSpace_Op&>(mOp);
// suppose an NCHW Tensor format
// Get input dimensions
const auto& dims = op.getInput(0)->dims<4>();
// get final output dimension
const std::array<DimSize_t, 4> final_dims = op.getOutput(0)->dims<4>();
std::size_t b = dims[0];
std::size_t c = dims[1] / (static_cast<DimSize_t>(op.blockSize()) * static_cast<DimSize_t>(op.blockSize()));
std::size_t h = dims[2];
std::size_t w = dims[3];
// Copt input tensor to output
op.setOutput(0, op.getInput(0));
// Step 1: Resize
const std::vector<DimSize_t> resize_dims =
(op.mode() == DepthToSpace_Op::Mode::CRD) ?
std::vector<DimSize_t>({b, c, static_cast<DimSize_t>(op.blockSize()), static_cast<DimSize_t>(op.blockSize()), h, w}) :
std::vector<DimSize_t>({b, static_cast<DimSize_t>(op.blockSize()), static_cast<DimSize_t>(op.blockSize()), c, h, w});
op.getOutput(0)->resize(resize_dims);
// Step 2: Transpose
const std::vector<DimSize_t> transpose_order =
(op.mode() == DepthToSpace_Op::Mode::CRD) ?
std::vector<DimSize_t>({0, 1, 4, 2, 5, 3}) :
std::vector<DimSize_t>({0, 3, 4, 1, 5, 2});
op.getOutput(0)->copyTranspose(*(op.getOutput(0)), transpose_order);
// Step 3: Final resize
op.getOutput(0)->resize(final_dims);
}
//////////////////////////////////////////////////////
const std::string Aidge::DepthToSpace_Op::Type = "DepthToSpace";
Aidge::DepthToSpace_Op::DepthToSpace_Op(const std::uint32_t blockSize, const Aidge::DepthToSpace_Op::Mode mode)
: OperatorTensor(Type, {InputCategory::Data}, 1),
mAttributes(std::make_shared<Attributes_>(
attr<DepthToSpaceAttr::BlockSize>(blockSize),
attr<DepthToSpaceAttr::Mode>(mode)))
{
// ctor
}
Aidge::DepthToSpace_Op::DepthToSpace_Op(const Aidge::DepthToSpace_Op& op)
: OperatorTensor(op),
mAttributes(op.mAttributes)
{
if (op.mImpl) {
SET_IMPL_MACRO(DepthToSpace_Op, *this, op.backend());
} else {
mImpl = nullptr;
}
}
std::shared_ptr<Aidge::Operator> Aidge::DepthToSpace_Op::clone() const {
return std::make_shared<DepthToSpace_Op>(*this);
}
bool Aidge::DepthToSpace_Op::forwardDims(bool /*allowDataDependency*/) {
if (inputsAssociated()) {
AIDGE_ASSERT(getInput(0)->nbDims() == 4, "{} Operator only accepts 4-D input Tensors.", DepthToSpace_Op::Type);
AIDGE_ASSERT(getInput(0)->dims()[1] % (blockSize() * blockSize()) == 0, "Number of channels must be divisible by blocksize squared");
// Compute output dims
const std::array<DimSize_t, 4>& inDims = getInput(0)->dims<4>();
const std::vector<DimSize_t> outDims =
{inDims[0],
inDims[1] / (static_cast<DimSize_t>(blockSize()) * static_cast<DimSize_t>(blockSize())),
inDims[2] * static_cast<DimSize_t>(blockSize()),
inDims[3] * static_cast<DimSize_t>(blockSize())};
mOutputs[0]->resize(outDims);
return true;
}
return false;
}
void Aidge::DepthToSpace_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) {
if (Registrar<DepthToSpace_Op>::exists({name})) {
SET_IMPL_MACRO(DepthToSpace_Op, *this, name);
}
else {
mImpl = std::make_shared<DepthToSpace_OpImpl>(*this);
}
mOutputs[0]->setBackend(name, device);
}
//////////////////////////////////////////////////////////
std::shared_ptr<Aidge::Node> Aidge::DepthToSpace(const std::uint32_t blockSize,
const Aidge::DepthToSpace_Op::Mode mode,
const std::string& name) {
return std::make_shared<Node>(std::make_shared<DepthToSpace_Op>(blockSize, mode), name);
}
\ No newline at end of file
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <memory>
#include <random> // std::random_device, std::mt19937, std::uniform_int_distribution
#include <catch2/catch_test_macros.hpp>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/DepthToSpace.hpp"
namespace Aidge {
TEST_CASE("[core/operator] DepthToSpace_Op", "[DepthToSpace][forwardDims]") {
// Create a random number generator
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<std::size_t> dimsDist(1, 10);
SECTION("Nb dimensions") {
// Create DepthToSpace operator with block_size of 1 compatible with any size
std::shared_ptr<Node> myDTS = DepthToSpace(1);
auto op = std::static_pointer_cast<OperatorTensor>(myDTS -> getOperator());
SECTION("Scalar") {
// input_0
std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>(9);
op -> associateInput(0,T0);
REQUIRE_THROWS(op->forwardDims());
}
SECTION("+1-D") {
// input_0
std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>();
op -> associateInput(0,T0);
for (std::uint16_t nb_dims = 0; nb_dims < 6; ++nb_dims) {
std::vector<std::size_t> dims0(nb_dims);
for (std::size_t i = 0; i < nb_dims; ++i) {
dims0[i] = dimsDist(gen);
}
T0->resize(dims0);
if (nb_dims == 4) {
REQUIRE_NOTHROW(op->forwardDims());
} else {
REQUIRE_THROWS(op->forwardDims());
}
}
}
}
SECTION("Propagation") {
// input_0 with 4-D in NCHW format
std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>(std::vector<DimSize_t>({1, 16, 100, 100}));
DepthToSpace_Op myDTS_should_throw = DepthToSpace_Op(7);
myDTS_should_throw.associateInput(0,T0);
REQUIRE_THROWS(myDTS_should_throw.forwardDims());
DepthToSpace_Op myDTS_should_not_throw = DepthToSpace_Op(4);
myDTS_should_not_throw.associateInput(0,T0);
REQUIRE_NOTHROW(myDTS_should_not_throw.forwardDims());
REQUIRE(myDTS_should_not_throw.getOutput(0)->dims() == std::vector<std::size_t>({1,1,400,400}));
}
}
TEST_CASE("[core/operator] DepthToSpace_Op impl", "[DepthToSpace][forward]") {
// Create a random number generator
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<std::size_t> dimsDist(1, 10);
}
} // namespace Aidge
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment