diff --git a/include/aidge/operator/DepthToSpace.hpp b/include/aidge/operator/DepthToSpace.hpp
new file mode 100644
index 0000000000000000000000000000000000000000..72ff83834962c1860b135a4187e72199b04361db
--- /dev/null
+++ b/include/aidge/operator/DepthToSpace.hpp
@@ -0,0 +1,95 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#ifndef AIDGE_CORE_OPERATOR_DEPTHTOSPACE_H_
+#define AIDGE_CORE_OPERATOR_DEPTHTOSPACE_H_
+
+#include <array>
+#include <memory>
+#include <vector>
+
+#include "aidge/graph/Node.hpp"
+#include "aidge/operator/OperatorTensor.hpp"
+#include "aidge/utils/Registrar.hpp"
+#include "aidge/utils/StaticAttributes.hpp"
+#include "aidge/utils/Types.h"
+
+namespace Aidge {
+class DepthToSpace_OpImpl : public OperatorImpl {
+public:
+    DepthToSpace_OpImpl(const Operator& op, const std::string& backend = ""): OperatorImpl(op, backend) {}
+    void forward() override;
+};
+
+enum class DepthToSpaceAttr { BlockSize, Mode };
+
+
+class DepthToSpace_Op : public OperatorTensor,
+                public Registrable<DepthToSpace_Op,
+                    std::string,
+                    std::shared_ptr<OperatorImpl>(const DepthToSpace_Op &)> {
+public:
+    static const std::string Type;
+    enum class Mode { DCR, CRD };
+
+private:
+    using Attributes_ = StaticAttributes<DepthToSpaceAttr, std::uint32_t, Mode>;
+    template <DepthToSpaceAttr e>
+    using attr = typename Attributes_::template attr<e>;
+    const std::shared_ptr<Attributes_> mAttributes;
+
+public:
+
+    DepthToSpace_Op() = delete;
+
+    DepthToSpace_Op(const std::uint32_t blockSize, const Mode mode = Mode::CRD);
+
+    /**
+     * @brief Copy-constructor. Copy the operator attributes and its output tensor(s),
+     * but not its input tensors (the new operator has no input associated).
+     * @param op Operator to copy.
+     */
+    DepthToSpace_Op(const DepthToSpace_Op& op);
+
+    /**
+     * @brief Clone the operator using its copy-constructor.
+     * @see Operator::DepthToSpace_Op
+     */
+    std::shared_ptr<Operator> clone() const override;
+
+    bool forwardDims(bool /*allowDataDependency*/ = false) override final;
+
+    void setBackend(const std::string &name, DeviceIdx_t device = 0) override final;
+
+    inline std::shared_ptr<Attributes> attributes() const override { return mAttributes; }
+    inline std::uint32_t& blockSize() const { return mAttributes->template getAttr<DepthToSpaceAttr::BlockSize>(); }
+    inline Mode& mode() const { return mAttributes->template getAttr<DepthToSpaceAttr::Mode>(); }
+
+    static const std::vector<std::string> getInputsName() {
+        return {"data_input"};
+    }
+    static const std::vector<std::string> getOutputsName() {
+        return {"data_output"};
+    }
+};
+
+std::shared_ptr<Node> DepthToSpace(const std::uint32_t blockSize,
+                                    const DepthToSpace_Op::Mode mode = DepthToSpace_Op::Mode::CRD,
+                                    const std::string& name = "");
+
+}  // namespace Aidge
+
+namespace {
+template <>
+const char *const EnumStrings<Aidge::DepthToSpaceAttr>::data[] = { "block_size", "mode" };
+}
+
+#endif //AIDGE_CORE_OPERATOR_DEPTHTOSPACE_H_
diff --git a/src/operator/DepthToSpace.cpp b/src/operator/DepthToSpace.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..0c858548ec484c34a651efa4adec1cde7ccb9e54
--- /dev/null
+++ b/src/operator/DepthToSpace.cpp
@@ -0,0 +1,122 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#include "aidge/operator/DepthToSpace.hpp"
+
+#include <array>
+#include <cstddef>  // std::size_t
+#include <string>
+#include <vector>
+
+#include "aidge/data/Tensor.hpp"
+#include "aidge/utils/ErrorHandling.hpp"
+#include "aidge/utils/Types.h"
+
+void Aidge::DepthToSpace_OpImpl::forward() {
+    const DepthToSpace_Op& op = dynamic_cast<const DepthToSpace_Op&>(mOp);
+    // suppose an NCHW Tensor format
+
+    // Get input dimensions
+    const auto& dims = op.getInput(0)->dims<4>();
+    // get final output dimension
+    const std::array<DimSize_t, 4> final_dims = op.getOutput(0)->dims<4>();
+
+    std::size_t b = dims[0];
+    std::size_t c = dims[1] / (static_cast<DimSize_t>(op.blockSize()) * static_cast<DimSize_t>(op.blockSize()));
+    std::size_t h = dims[2];
+    std::size_t w = dims[3];
+
+    // Copt input tensor to output
+    op.setOutput(0, op.getInput(0));
+
+    // Step 1: Resize
+    const std::vector<DimSize_t> resize_dims =
+        (op.mode() == DepthToSpace_Op::Mode::CRD) ?
+            std::vector<DimSize_t>({b, c, static_cast<DimSize_t>(op.blockSize()), static_cast<DimSize_t>(op.blockSize()), h, w}) :
+            std::vector<DimSize_t>({b, static_cast<DimSize_t>(op.blockSize()), static_cast<DimSize_t>(op.blockSize()), c, h, w});
+    op.getOutput(0)->resize(resize_dims);
+
+    // Step 2: Transpose
+    const std::vector<DimSize_t> transpose_order =
+        (op.mode() == DepthToSpace_Op::Mode::CRD) ?
+            std::vector<DimSize_t>({0, 1, 4, 2, 5, 3}) :
+            std::vector<DimSize_t>({0, 3, 4, 1, 5, 2});
+    op.getOutput(0)->copyTranspose(*(op.getOutput(0)), transpose_order);
+
+    // Step 3: Final resize
+    op.getOutput(0)->resize(final_dims);
+}
+
+//////////////////////////////////////////////////////
+
+const std::string Aidge::DepthToSpace_Op::Type = "DepthToSpace";
+
+Aidge::DepthToSpace_Op::DepthToSpace_Op(const std::uint32_t blockSize, const Aidge::DepthToSpace_Op::Mode mode)
+    : OperatorTensor(Type, {InputCategory::Data}, 1),
+        mAttributes(std::make_shared<Attributes_>(
+        attr<DepthToSpaceAttr::BlockSize>(blockSize),
+        attr<DepthToSpaceAttr::Mode>(mode)))
+{
+    // ctor
+}
+
+Aidge::DepthToSpace_Op::DepthToSpace_Op(const Aidge::DepthToSpace_Op& op)
+    : OperatorTensor(op),
+      mAttributes(op.mAttributes)
+{
+    if (op.mImpl) {
+        SET_IMPL_MACRO(DepthToSpace_Op, *this, op.backend());
+    } else {
+        mImpl = nullptr;
+    }
+}
+
+std::shared_ptr<Aidge::Operator> Aidge::DepthToSpace_Op::clone() const {
+    return std::make_shared<DepthToSpace_Op>(*this);
+}
+
+bool Aidge::DepthToSpace_Op::forwardDims(bool /*allowDataDependency*/) {
+    if (inputsAssociated()) {
+        AIDGE_ASSERT(getInput(0)->nbDims() == 4, "{} Operator only accepts 4-D input Tensors.", DepthToSpace_Op::Type);
+        AIDGE_ASSERT(getInput(0)->dims()[1] % (blockSize() * blockSize()) == 0, "Number of channels must be divisible by blocksize squared");
+
+        // Compute output dims
+        const std::array<DimSize_t, 4>& inDims = getInput(0)->dims<4>();
+        const std::vector<DimSize_t> outDims =
+                {inDims[0],
+                 inDims[1] / (static_cast<DimSize_t>(blockSize()) * static_cast<DimSize_t>(blockSize())),
+                 inDims[2] * static_cast<DimSize_t>(blockSize()),
+                 inDims[3] * static_cast<DimSize_t>(blockSize())};
+
+        mOutputs[0]->resize(outDims);
+        return true;
+    }
+
+    return false;
+}
+
+void Aidge::DepthToSpace_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) {
+    if (Registrar<DepthToSpace_Op>::exists({name})) {
+        SET_IMPL_MACRO(DepthToSpace_Op, *this, name);
+    }
+    else {
+        mImpl = std::make_shared<DepthToSpace_OpImpl>(*this);
+    }
+    mOutputs[0]->setBackend(name, device);
+}
+
+//////////////////////////////////////////////////////////
+
+std::shared_ptr<Aidge::Node> Aidge::DepthToSpace(const std::uint32_t blockSize,
+                                    const Aidge::DepthToSpace_Op::Mode mode,
+                                    const std::string& name) {
+    return std::make_shared<Node>(std::make_shared<DepthToSpace_Op>(blockSize, mode), name);
+}
\ No newline at end of file
diff --git a/unit_tests/operator/Test_DepthToSpaceImpl.cpp b/unit_tests/operator/Test_DepthToSpaceImpl.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..62f760ce8b3942ab3101ff5e1324307a46048b91
--- /dev/null
+++ b/unit_tests/operator/Test_DepthToSpaceImpl.cpp
@@ -0,0 +1,87 @@
+/********************************************************************************
+ * Copyright (c) 2023 CEA-List
+ *
+ * This program and the accompanying materials are made available under the
+ * terms of the Eclipse Public License 2.0 which is available at
+ * http://www.eclipse.org/legal/epl-2.0.
+ *
+ * SPDX-License-Identifier: EPL-2.0
+ *
+ ********************************************************************************/
+
+#include <memory>
+#include <random>   // std::random_device, std::mt19937, std::uniform_int_distribution
+
+#include <catch2/catch_test_macros.hpp>
+
+#include "aidge/data/Tensor.hpp"
+#include "aidge/operator/DepthToSpace.hpp"
+
+
+namespace Aidge {
+
+TEST_CASE("[core/operator] DepthToSpace_Op", "[DepthToSpace][forwardDims]") {
+    // Create a random number generator
+    std::random_device rd;
+    std::mt19937 gen(rd());
+    std::uniform_int_distribution<std::size_t> dimsDist(1, 10);
+
+    SECTION("Nb dimensions") {
+        // Create DepthToSpace operator with block_size of 1 compatible with any size
+        std::shared_ptr<Node> myDTS = DepthToSpace(1);
+        auto op = std::static_pointer_cast<OperatorTensor>(myDTS -> getOperator());
+
+        SECTION("Scalar") {
+            // input_0
+            std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>(9);
+            op -> associateInput(0,T0);
+            REQUIRE_THROWS(op->forwardDims());
+        }
+        SECTION("+1-D") {
+            // input_0
+            std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>();
+            op -> associateInput(0,T0);
+
+            for (std::uint16_t nb_dims = 0; nb_dims < 6; ++nb_dims) {
+
+                std::vector<std::size_t> dims0(nb_dims);
+                for (std::size_t i = 0; i < nb_dims; ++i) {
+                    dims0[i] = dimsDist(gen);
+                }
+                T0->resize(dims0);
+                if (nb_dims == 4) {
+                    REQUIRE_NOTHROW(op->forwardDims());
+                } else {
+                    REQUIRE_THROWS(op->forwardDims());
+                }
+            }
+        }
+    }
+
+    SECTION("Propagation") {
+        // input_0 with 4-D in NCHW format
+        std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>(std::vector<DimSize_t>({1, 16, 100, 100}));
+
+        DepthToSpace_Op myDTS_should_throw = DepthToSpace_Op(7);
+        myDTS_should_throw.associateInput(0,T0);
+
+        REQUIRE_THROWS(myDTS_should_throw.forwardDims());
+
+        DepthToSpace_Op myDTS_should_not_throw = DepthToSpace_Op(4);
+        myDTS_should_not_throw.associateInput(0,T0);
+
+        REQUIRE_NOTHROW(myDTS_should_not_throw.forwardDims());
+        REQUIRE(myDTS_should_not_throw.getOutput(0)->dims() == std::vector<std::size_t>({1,1,400,400}));
+    }
+}
+
+TEST_CASE("[core/operator] DepthToSpace_Op impl", "[DepthToSpace][forward]") {
+    // Create a random number generator
+    std::random_device rd;
+    std::mt19937 gen(rd());
+    std::uniform_int_distribution<std::size_t> dimsDist(1, 10);
+
+
+}
+
+} // namespace Aidge