Error propagation leads to precision issue
What commit version of aidge do you use
-
aidge_core
: 52596e70f80b83f047eea50f06a61da60423f97d -
aidge_backend_cpu
: 4d100339 -
aidge_onnx
: ebd439bbbeaeac58ccd7cd6868e535c836ba953e
Problem description
Loading and inferring with the efficientNet model leads to precision issues.
I have analyzed with a script I have written the output errors that the precision errors come from intermediate layers of the network and propagate through it become non neglectable further in the network. Since the network is not a feed forward, the propagation is not constant. Here are the lines that test the absolute errors in the script (simplified)
all_layers_identical = True
layers_differ = []
relative_precision=1e-3
absolute_presision=1e-4
for idx, name in enumerate(onnx_node_names):
aidge_node = find_node_with_name(aidge_nodes, aidge_node_to_search)
onnx_node_output = onnx_outputs[idx]
aidge_node_output = np.array(aidge_node.get_operator().get_output(0))
error = np.abs(aidge_node_output - onnx_node_output)
err_threshold=relative_precision * np.abs(onnx_node_output) + absolute_presision
if np.any(error[error > err_threshold]): # error tolerance :
all_layers_identical = False
layers_differ.append((idx, name, np.mean(error), np.mean(err_threshold)))
What I get is :
layer idx | layer name | mean error | mean error threshold |
---|---|---|---|
20 | /blocks/blocks.1/blocks.1.0/se/ReduceMean_output_0 | 0.00017626438 | 0.0040660696 |
27 | /blocks/blocks.1/blocks.1.0/conv_pwl/Conv_output_0 | 3.397078e-05 | 0.0073460503 |
34 | /blocks/blocks.1/blocks.1.1/se/ReduceMean_output_0 | 0.00015502871 | 0.00081236113 |
41 | /blocks/blocks.1/blocks.1.1/conv_pwl/Conv_output_0 | 0.0001423933 | 0.0053374995 |
42 | /blocks/blocks.1/blocks.1.1/Add_output_0 | 0.00014138373 | 0.007889783 |
43 | /blocks/blocks.2/blocks.2.0/conv_pw/Conv_output_0 | 2.2628392e-05 | 0.0016293061 |
46 | /blocks/blocks.2/blocks.2.0/conv_dw/Conv_output_0 | 1.9270157e-05 | 0.0019656136 |
49 | /blocks/blocks.2/blocks.2.0/se/ReduceMean_output_0 | 0.0006917381 | 0.0014792526 |
50 | /blocks/blocks.2/blocks.2.0/se/conv_reduce/Conv_output_0 | 0.001630033 | 0.0031868948 |
52 | /blocks/blocks.2/blocks.2.0/se/act1/Mul_output_0 | 0.0015957039 | 0.0030804675 |
53 | /blocks/blocks.2/blocks.2.0/se/conv_expand/Conv_output_0 | 0.000783397 | 0.0026705994 |
55 | /blocks/blocks.2/blocks.2.0/se/Mul_output_0 | 4.7445785e-05 | 0.0014161852 |
56 | /blocks/blocks.2/blocks.2.0/conv_pwl/Conv_output_0 | 0.00032996858 | 0.004815449 |
57 | /blocks/blocks.2/blocks.2.1/conv_pw/Conv_output_0 | 5.8389065e-05 | 0.0012063695 |
59 | /blocks/blocks.2/blocks.2.1/bn1/act/Mul_output_0 | 2.4987983e-05 | 0.00059082295 |
60 | /blocks/blocks.2/blocks.2.1/conv_dw/Conv_output_0 | 6.416062e-05 | 0.0014070298 |
61 | /blocks/blocks.2/blocks.2.1/bn2/act/Sigmoid_output_0 | 9.393024e-06 | 0.0005374124 |
62 | /blocks/blocks.2/blocks.2.1/bn2/act/Mul_output_0 | 2.2771315e-05 | 0.00051652733 |
63 | /blocks/blocks.2/blocks.2.1/se/ReduceMean_output_0 | 0.0006387538 | 0.00045737767 |
64 | /blocks/blocks.2/blocks.2.1/se/conv_reduce/Conv_output_0 | 0.0012412429 | 0.002316205 |
66 | /blocks/blocks.2/blocks.2.1/se/act1/Mul_output_0 | 0.001327324 | 0.0021039292 |
67 | /blocks/blocks.2/blocks.2.1/se/conv_expand/Conv_output_0 | 0.0007842614 | 0.0011331665 |
68 | /blocks/blocks.2/blocks.2.1/se/gate/Sigmoid_output_0 | 0.00014541978 | 0.0006631331 |
69 | /blocks/blocks.2/blocks.2.1/se/Mul_output_0 | 6.175164e-05 | 0.00035459618 |
70 | /blocks/blocks.2/blocks.2.1/conv_pwl/Conv_output_0 | 0.0008929105 | 0.0022966256 |
71 | /blocks/blocks.2/blocks.2.1/Add_output_0 | 0.00095355336 | 0.004889038 |
72 | /blocks/blocks.3/blocks.3.0/conv_pw/Conv_output_0 | 0.00015333471 | 0.0014932235 |
73 | /blocks/blocks.3/blocks.3.0/bn1/act/Sigmoid_output_0 | 2.2842714e-05 | 0.00042134782 |
74 | /blocks/blocks.3/blocks.3.0/bn1/act/Mul_output_0 | 4.0460065e-05 | 0.00049278006 |
75 | /blocks/blocks.3/blocks.3.0/conv_dw/Conv_output_0 | 9.4713614e-05 | 0.0017175112 |
77 | /blocks/blocks.3/blocks.3.0/bn2/act/Mul_output_0 | 7.9814476e-05 | 0.0014430308 |
78 | /blocks/blocks.3/blocks.3.0/se/ReduceMean_output_0 | 0.0025558283 | 0.0014156274 |
79 | /blocks/blocks.3/blocks.3.0/se/conv_reduce/Conv_output_0 | 0.0031161667 | 0.0019700709 |
80 | /blocks/blocks.3/blocks.3.0/se/act1/Sigmoid_output_0 | 0.00032758823 | 0.0002549808 |
81 | /blocks/blocks.3/blocks.3.0/se/act1/Mul_output_0 | 0.0002366215 | 0.00032878076 |
84 | /blocks/blocks.3/blocks.3.0/se/Mul_output_0 | 5.8025635e-05 | 0.0008889851 |
85 | /blocks/blocks.3/blocks.3.0/conv_pwl/Conv_output_0 | 0.0009509306 | 0.0032336675 |
86 | /blocks/blocks.3/blocks.3.1/conv_pw/Conv_output_0 | 0.00014966291 | 0.0011965767 |
87 | /blocks/blocks.3/blocks.3.1/bn1/act/Sigmoid_output_0 | 2.3104172e-05 | 0.0006069027 |
88 | /blocks/blocks.3/blocks.3.1/bn1/act/Mul_output_0 | 6.756534e-05 | 0.0005699682 |
89 | /blocks/blocks.3/blocks.3.1/conv_dw/Conv_output_0 | 0.00019288302 | 0.0012409401 |
90 | /blocks/blocks.3/blocks.3.1/bn2/act/Sigmoid_output_0 | 3.262623e-05 | 0.0004738825 |
91 | /blocks/blocks.3/blocks.3.1/bn2/act/Mul_output_0 | 5.809163e-05 | 0.00040274422 |
92 | /blocks/blocks.3/blocks.3.1/se/ReduceMean_output_0 | 0.0025280535 | 0.000365251 |
93 | /blocks/blocks.3/blocks.3.1/se/conv_reduce/Conv_output_0 | 0.0057504224 | 0.0019475892 |
94 | /blocks/blocks.3/blocks.3.1/se/act1/Sigmoid_output_0 | 0.0006946266 | 0.00092850963 |
95 | /blocks/blocks.3/blocks.3.1/se/act1/Mul_output_0 | 0.005793375 | 0.0017197866 |
96 | /blocks/blocks.3/blocks.3.1/se/conv_expand/Conv_output_0 | 0.0032542692 | 0.0013993264 |
97 | /blocks/blocks.3/blocks.3.1/se/gate/Sigmoid_output_0 | 0.00048905966 | 0.0005417557 |
98 | /blocks/blocks.3/blocks.3.1/se/Mul_output_0 | 0.00017608445 | 0.00023339101 |
99 | /blocks/blocks.3/blocks.3.1/conv_pwl/Conv_output_0 | 0.0030686846 | 0.0014585877 |
100 | /blocks/blocks.3/blocks.3.1/Add_output_0 | 0.0031812433 | 0.0035229283 |
101 | /blocks/blocks.3/blocks.3.2/conv_pw/Conv_output_0 | 0.00046463092 | 0.0011035614 |
102 | /blocks/blocks.3/blocks.3.2/bn1/act/Sigmoid_output_0 | 7.7532604e-05 | 0.0005926611 |
103 | /blocks/blocks.3/blocks.3.2/bn1/act/Mul_output_0 | 0.0002076765 | 0.0005223205 |
104 | /blocks/blocks.3/blocks.3.2/conv_dw/Conv_output_0 | 0.0005651282 | 0.0012037717 |
105 | /blocks/blocks.3/blocks.3.2/bn2/act/Sigmoid_output_0 | 9.608331e-05 | 0.00048499275 |
106 | /blocks/blocks.3/blocks.3.2/bn2/act/Mul_output_0 | 0.00017842928 | 0.00038385516 |
107 | /blocks/blocks.3/blocks.3.2/se/ReduceMean_output_0 | 0.0025045415 | 0.00033949193 |
108 | /blocks/blocks.3/blocks.3.2/se/conv_reduce/Conv_output_0 | 0.005862897 | 0.0018530544 |
109 | /blocks/blocks.3/blocks.3.2/se/act1/Sigmoid_output_0 | 0.0007015884 | 0.0009064029 |
110 | /blocks/blocks.3/blocks.3.2/se/act1/Mul_output_0 | 0.005586757 | 0.0016543369 |
111 | /blocks/blocks.3/blocks.3.2/se/conv_expand/Conv_output_0 | 0.002790504 | 0.0012444104 |
112 | /blocks/blocks.3/blocks.3.2/se/gate/Sigmoid_output_0 | 0.00041979848 | 0.0005083868 |
113 | /blocks/blocks.3/blocks.3.2/se/Mul_output_0 | 0.00014819494 | 0.00021653684 |
114 | /blocks/blocks.3/blocks.3.2/conv_pwl/Conv_output_0 | 0.0032936821 | 0.0015574635 |
115 | /blocks/blocks.3/blocks.3.2/Add_output_0 | 0.00463647 | 0.00412507 |
116 | /blocks/blocks.4/blocks.4.0/conv_pw/Conv_output_0 | 0.0007864241 | 0.0011596942 |
117 | /blocks/blocks.4/blocks.4.0/bn1/act/Sigmoid_output_0 | 0.000116672076 | 0.0005367276 |
118 | /blocks/blocks.4/blocks.4.0/bn1/act/Mul_output_0 | 0.00028260544 | 0.00044680314 |
119 | /blocks/blocks.4/blocks.4.0/conv_dw/Conv_output_0 | 0.00056238647 | 0.0009743029 |
120 | /blocks/blocks.4/blocks.4.0/bn2/act/Sigmoid_output_0 | 0.00010556815 | 0.00062841264 |
121 | /blocks/blocks.4/blocks.4.0/bn2/act/Mul_output_0 | 0.00027722362 | 0.00054298557 |
122 | /blocks/blocks.4/blocks.4.0/se/ReduceMean_output_0 | 0.0026416 | 0.0004904947 |
123 | /blocks/blocks.4/blocks.4.0/se/conv_reduce/Conv_output_0 | 0.006663735 | 0.0019083644 |
124 | /blocks/blocks.4/blocks.4.0/se/act1/Sigmoid_output_0 | 0.0006677717 | 0.0008596316 |
125 | /blocks/blocks.4/blocks.4.0/se/act1/Mul_output_0 | 0.0062392363 | 0.0016416882 |
126 | /blocks/blocks.4/blocks.4.0/se/conv_expand/Conv_output_0 | 0.0033047388 | 0.0014170706 |
127 | /blocks/blocks.4/blocks.4.0/se/gate/Sigmoid_output_0 | 0.00054162584 | 0.00074971525 |
128 | /blocks/blocks.4/blocks.4.0/se/Mul_output_0 | 0.0003330703 | 0.00038580506 |
129 | /blocks/blocks.4/blocks.4.0/conv_pwl/Conv_output_0 | 0.005361787 | 0.002531155 |
130 | /blocks/blocks.4/blocks.4.1/conv_pw/Conv_output_0 | 0.0011054997 | 0.00090794725 |
131 | /blocks/blocks.4/blocks.4.1/bn1/act/Sigmoid_output_0 | 0.000205534 | 0.00054302946 |
132 | /blocks/blocks.4/blocks.4.1/bn1/act/Mul_output_0 | 0.0004527371 | 0.00039086887 |
133 | /blocks/blocks.4/blocks.4.1/conv_dw/Conv_output_0 | 0.0017248016 | 0.0013264744 |
134 | /blocks/blocks.4/blocks.4.1/bn2/act/Sigmoid_output_0 | 0.00027664943 | 0.00045980973 |
135 | /blocks/blocks.4/blocks.4.1/bn2/act/Mul_output_0 | 0.00052876485 | 0.00038345243 |
136 | /blocks/blocks.4/blocks.4.1/se/ReduceMean_output_0 | 0.0027458246 | 0.0003202147 |
137 | /blocks/blocks.4/blocks.4.1/se/conv_reduce/Conv_output_0 | 0.008337066 | 0.0018249564 |
138 | /blocks/blocks.4/blocks.4.1/se/act1/Sigmoid_output_0 | 0.0009315759 | 0.0009176079 |
139 | /blocks/blocks.4/blocks.4.1/se/act1/Mul_output_0 | 0.008538551 | 0.0016020554 |
140 | /blocks/blocks.4/blocks.4.1/se/conv_expand/Conv_output_0 | 0.003670668 | 0.0010861835 |
141 | /blocks/blocks.4/blocks.4.1/se/gate/Sigmoid_output_0 | 0.00061995053 | 0.0004947214 |
142 | /blocks/blocks.4/blocks.4.1/se/Mul_output_0 | 0.0002776853 | 0.00021088583 |
143 | /blocks/blocks.4/blocks.4.1/conv_pwl/Conv_output_0 | 0.0034398844 | 0.0010042868 |
144 | /blocks/blocks.4/blocks.4.1/Add_output_0 | 0.0059230197 | 0.002727239 |
145 | /blocks/blocks.4/blocks.4.2/conv_pw/Conv_output_0 | 0.0010920274 | 0.0010350886 |
146 | /blocks/blocks.4/blocks.4.2/bn1/act/Sigmoid_output_0 | 0.00019354315 | 0.00051446556 |
147 | /blocks/blocks.4/blocks.4.2/bn1/act/Mul_output_0 | 0.0004160102 | 0.00040520186 |
148 | /blocks/blocks.4/blocks.4.2/conv_dw/Conv_output_0 | 0.0014268254 | 0.001469916 |
149 | /blocks/blocks.4/blocks.4.2/bn2/act/Sigmoid_output_0 | 0.00021312047 | 0.00044073156 |
150 | /blocks/blocks.4/blocks.4.2/bn2/act/Mul_output_0 | 0.0003990355 | 0.00038276153 |
151 | /blocks/blocks.4/blocks.4.2/se/ReduceMean_output_0 | 0.002518116 | 0.0003317067 |
152 | /blocks/blocks.4/blocks.4.2/se/conv_reduce/Conv_output_0 | 0.00727809 | 0.0018282518 |
153 | /blocks/blocks.4/blocks.4.2/se/act1/Sigmoid_output_0 | 0.0008869405 | 0.0009299108 |
154 | /blocks/blocks.4/blocks.4.2/se/act1/Mul_output_0 | 0.0075140693 | 0.001594181 |
155 | /blocks/blocks.4/blocks.4.2/se/conv_expand/Conv_output_0 | 0.003148218 | 0.0010880264 |
156 | /blocks/blocks.4/blocks.4.2/se/gate/Sigmoid_output_0 | 0.0005323714 | 0.0004367506 |
157 | /blocks/blocks.4/blocks.4.2/se/Mul_output_0 | 0.00023109275 | 0.0002005821 |
158 | /blocks/blocks.4/blocks.4.2/conv_pwl/Conv_output_0 | 0.0034760193 | 0.0009777565 |
159 | /blocks/blocks.4/blocks.4.2/Add_output_0 | 0.0070682573 | 0.0028992943 |
160 | /blocks/blocks.5/blocks.5.0/conv_pw/Conv_output_0 | 0.0011035419 | 0.001468014 |
161 | /blocks/blocks.5/blocks.5.0/bn1/act/Sigmoid_output_0 | 0.00017246469 | 0.0003651205 |
162 | /blocks/blocks.5/blocks.5.0/bn1/act/Mul_output_0 | 0.00023935655 | 0.00036948547 |
163 | /blocks/blocks.5/blocks.5.0/conv_dw/Conv_output_0 | 0.0009335324 | 0.0016323271 |
164 | /blocks/blocks.5/blocks.5.0/bn2/act/Sigmoid_output_0 | 0.0001503142 | 0.0008237422 |
165 | /blocks/blocks.5/blocks.5.0/bn2/act/Mul_output_0 | 0.0007084055 | 0.0013622433 |
166 | /blocks/blocks.5/blocks.5.0/se/ReduceMean_output_0 | 0.010306074 | 0.001346503 |
167 | /blocks/blocks.5/blocks.5.0/se/conv_reduce/Conv_output_0 | 0.021179428 | 0.0036870483 |
168 | /blocks/blocks.5/blocks.5.0/se/act1/Sigmoid_output_0 | 0.0007031831 | 0.00013924058 |
169 | /blocks/blocks.5/blocks.5.0/se/act1/Mul_output_0 | 0.0013417543 | 0.00021202008 |
170 | /blocks/blocks.5/blocks.5.0/se/conv_expand/Conv_output_0 | 0.00030736218 | 0.0018002571 |
171 | /blocks/blocks.5/blocks.5.0/se/gate/Sigmoid_output_0 | 4.8304686e-05 | 0.00092346966 |
172 | /blocks/blocks.5/blocks.5.0/se/Mul_output_0 | 0.0005672836 | 0.0011894618 |
173 | /blocks/blocks.5/blocks.5.0/conv_pwl/Conv_output_0 | 0.006021776 | 0.0018752215 |
174 | /blocks/blocks.5/blocks.5.1/conv_pw/Conv_output_0 | 0.001103883 | 0.000807528 |
175 | /blocks/blocks.5/blocks.5.1/bn1/act/Sigmoid_output_0 | 0.00020608083 | 0.0005077854 |
176 | /blocks/blocks.5/blocks.5.1/bn1/act/Mul_output_0 | 0.00035068433 | 0.00029885702 |
177 | /blocks/blocks.5/blocks.5.1/conv_dw/Conv_output_0 | 0.0019906033 | 0.0014314817 |
178 | /blocks/blocks.5/blocks.5.1/bn2/act/Sigmoid_output_0 | 0.00031967438 | 0.00043641028 |
179 | /blocks/blocks.5/blocks.5.1/bn2/act/Mul_output_0 | 0.00057341723 | 0.00042094255 |
180 | /blocks/blocks.5/blocks.5.1/se/ReduceMean_output_0 | 0.0099079115 | 0.00038134688 |
181 | /blocks/blocks.5/blocks.5.1/se/conv_reduce/Conv_output_0 | 0.0344253 | 0.0014752947 |
182 | /blocks/blocks.5/blocks.5.1/se/act1/Sigmoid_output_0 | 0.0056844726 | 0.0008371084 |
183 | /blocks/blocks.5/blocks.5.1/se/act1/Mul_output_0 | 0.03026931 | 0.0012428119 |
184 | /blocks/blocks.5/blocks.5.1/se/conv_expand/Conv_output_0 | 0.018655406 | 0.0013783332 |
185 | /blocks/blocks.5/blocks.5.1/se/gate/Sigmoid_output_0 | 0.002813167 | 0.00038266054 |
186 | /blocks/blocks.5/blocks.5.1/se/Mul_output_0 | 0.0010293577 | 0.00019056886 |
187 | /blocks/blocks.5/blocks.5.1/conv_pwl/Conv_output_0 | 0.012285612 | 0.0007056559 |
188 | /blocks/blocks.5/blocks.5.1/Add_output_0 | 0.013867586 | 0.0019946524 |
189 | /blocks/blocks.5/blocks.5.2/conv_pw/Conv_output_0 | 0.0023675403 | 0.00091301044 |
190 | /blocks/blocks.5/blocks.5.2/bn1/act/Sigmoid_output_0 | 0.00044476372 | 0.00048035663 |
191 | /blocks/blocks.5/blocks.5.2/bn1/act/Mul_output_0 | 0.0006741842 | 0.00032202443 |
192 | /blocks/blocks.5/blocks.5.2/conv_dw/Conv_output_0 | 0.0038887511 | 0.001523383 |
193 | /blocks/blocks.5/blocks.5.2/bn2/act/Sigmoid_output_0 | 0.00062213914 | 0.0004099933 |
194 | /blocks/blocks.5/blocks.5.2/bn2/act/Mul_output_0 | 0.0010981205 | 0.00039957504 |
195 | /blocks/blocks.5/blocks.5.2/se/ReduceMean_output_0 | 0.010093547 | 0.0003625181 |
196 | /blocks/blocks.5/blocks.5.2/se/conv_reduce/Conv_output_0 | 0.039611753 | 0.0015426408 |
197 | /blocks/blocks.5/blocks.5.2/se/act1/Sigmoid_output_0 | 0.0061542415 | 0.0008513045 |
198 | /blocks/blocks.5/blocks.5.2/se/act1/Mul_output_0 | 0.036021467 | 0.0013173624 |
199 | /blocks/blocks.5/blocks.5.2/se/conv_expand/Conv_output_0 | 0.019549191 | 0.0015742334 |
200 | /blocks/blocks.5/blocks.5.2/se/gate/Sigmoid_output_0 | 0.0027249856 | 0.0003322226 |
201 | /blocks/blocks.5/blocks.5.2/se/Mul_output_0 | 0.00094588666 | 0.0001725451 |
202 | /blocks/blocks.5/blocks.5.2/conv_pwl/Conv_output_0 | 0.0143884765 | 0.00067049795 |
203 | /blocks/blocks.5/blocks.5.2/Add_output_0 | 0.021272337 | 0.002095741 |
204 | /blocks/blocks.5/blocks.5.3/conv_pw/Conv_output_0 | 0.004865537 | 0.0010659747 |
205 | /blocks/blocks.5/blocks.5.3/bn1/act/Sigmoid_output_0 | 0.00086632586 | 0.00044039768 |
206 | /blocks/blocks.5/blocks.5.3/bn1/act/Mul_output_0 | 0.0012242291 | 0.00032635813 |
207 | /blocks/blocks.5/blocks.5.3/conv_dw/Conv_output_0 | 0.0066965963 | 0.001564251 |
208 | /blocks/blocks.5/blocks.5.3/bn2/act/Sigmoid_output_0 | 0.001018525 | 0.00039672412 |
209 | /blocks/blocks.5/blocks.5.3/bn2/act/Mul_output_0 | 0.0017702777 | 0.0003774199 |
210 | /blocks/blocks.5/blocks.5.3/se/ReduceMean_output_0 | 0.010352467 | 0.00034317243 |
211 | /blocks/blocks.5/blocks.5.3/se/conv_reduce/Conv_output_0 | 0.045181204 | 0.0015816354 |
212 | /blocks/blocks.5/blocks.5.3/se/act1/Sigmoid_output_0 | 0.0067019965 | 0.0008706029 |
213 | /blocks/blocks.5/blocks.5.3/se/act1/Mul_output_0 | 0.043173436 | 0.0013603106 |
214 | /blocks/blocks.5/blocks.5.3/se/conv_expand/Conv_output_0 | 0.022675313 | 0.0019136237 |
215 | /blocks/blocks.5/blocks.5.3/se/gate/Sigmoid_output_0 | 0.0028843991 | 0.00026971917 |
216 | /blocks/blocks.5/blocks.5.3/se/Mul_output_0 | 0.00097613776 | 0.00015066663 |
217 | /blocks/blocks.5/blocks.5.3/conv_pwl/Conv_output_0 | 0.015474477 | 0.00053682236 |
218 | /blocks/blocks.5/blocks.5.3/Add_output_0 | 0.028380187 | 0.002169295 |
219 | /blocks/blocks.6/blocks.6.0/conv_pw/Conv_output_0 | 0.003017706 | 0.000740708 |
220 | /blocks/blocks.6/blocks.6.0/bn1/act/Sigmoid_output_0 | 0.00061169197 | 0.0005338136 |
221 | /blocks/blocks.6/blocks.6.0/bn1/act/Mul_output_0 | 0.0010064499 | 0.00037068935 |
222 | /blocks/blocks.6/blocks.6.0/conv_dw/Conv_output_0 | 0.00964251 | 0.0014225851 |
223 | /blocks/blocks.6/blocks.6.0/bn2/act/Sigmoid_output_0 | 0.0013903058 | 0.00044902234 |
224 | /blocks/blocks.6/blocks.6.0/bn2/act/Mul_output_0 | 0.002510822 | 0.00040639512 |
225 | /blocks/blocks.6/blocks.6.0/se/ReduceMean_output_0 | 0.010243341 | 0.00037751487 |
226 | /blocks/blocks.6/blocks.6.0/se/conv_reduce/Conv_output_0 | 0.051814035 | 0.0009224626 |
227 | /blocks/blocks.6/blocks.6.0/se/act1/Sigmoid_output_0 | 0.010513251 | 0.00067639345 |
228 | /blocks/blocks.6/blocks.6.0/se/act1/Mul_output_0 | 0.035027497 | 0.0006653939 |
229 | /blocks/blocks.6/blocks.6.0/se/conv_expand/Conv_output_0 | 0.040829808 | 0.00070964603 |
230 | /blocks/blocks.6/blocks.6.0/se/gate/Sigmoid_output_0 | 0.009006625 | 0.0006644313 |
231 | /blocks/blocks.6/blocks.6.0/se/Mul_output_0 | 0.0036383325 | 0.00027408556 |
232 | /blocks/blocks.6/blocks.6.0/conv_pwl/Conv_output_0 | 0.028741943 | 0.0011057225 |
233 | /conv_head/Conv_output_0 | 0.029740212 | 0.0022318913 |
234 | /bn2/act/Sigmoid_output_0 | 0.0035772326 | 0.00031688085 |
235 | /bn2/act/Mul_output_0 | 0.0067886924 | 0.0003421825 |
236 | /global_pool/pool/GlobalAveragePool_output_0 | 0.0028113197 | 0.00029361926 |
238 | 648 | 0.029398264 | 0.00070788513 |
You can observe that the errors. To make it more digest I plotted the ratio of mean error of mean ratio :
layers_error.append(
np.mean(error) / np.mean(err_threshold)
if np.mean(err_threshold) != 0
else 0
)
You can observe spikes of error/threshold a very specific layers, since patterns is reccurring juste like the network node graph.
Reproducible example code
The script to run the tests is available on aidge_onnx but is not already merged : aidge_onnx!33 (merged)