Skip to content
Snippets Groups Projects
Commit 0d7ea895 authored by Olivier BICHLER's avatar Olivier BICHLER
Browse files

Fixed typo

parent d7cafea1
No related branches found
No related tags found
No related merge requests found
Pipeline #67118 passed
Showing
with 42 additions and 42 deletions
...@@ -20,14 +20,14 @@ ...@@ -20,14 +20,14 @@
namespace Aidge { namespace Aidge {
template <class I, class O> template <class I, class O>
void AbsImpl_cpu_forward_kernel(std::size_t inputLenght, void AbsImpl_cpu_forward_kernel(std::size_t inputLength,
const void* input_, const void* input_,
void* output_) { void* output_) {
const I* input = static_cast<const I*>(input_); const I* input = static_cast<const I*>(input_);
O* output = static_cast<O*>(output_); O* output = static_cast<O*>(output_);
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
output[i] = std::abs(input[i]); output[i] = std::abs(input[i]);
} }
} }
......
...@@ -20,20 +20,20 @@ ...@@ -20,20 +20,20 @@
namespace Aidge { namespace Aidge {
template <class I, class O> template <class I, class O>
void AtanImpl_cpu_forward_kernel(std::size_t inputLenght, void AtanImpl_cpu_forward_kernel(std::size_t inputLength,
const void* input_, const void* input_,
void* output_) { void* output_) {
const I* input = static_cast<const I*>(input_); const I* input = static_cast<const I*>(input_);
O* output = static_cast<O*>(output_); O* output = static_cast<O*>(output_);
for (size_t i = 0; i < inputLenght; ++i) { for (size_t i = 0; i < inputLength; ++i) {
output[i] = static_cast<O>(atan(input[i])); output[i] = static_cast<O>(atan(input[i]));
} }
} }
template <class O, class GI, class GO> template <class O, class GI, class GO>
void AtanImpl_cpu_backward_kernel(const std::size_t inputLenght, void AtanImpl_cpu_backward_kernel(const std::size_t inputLength,
const void* output_, const void* grad_output_, const void* output_, const void* grad_output_,
void* grad_input_) { void* grad_input_) {
const O* output = static_cast<const O*>(output_); const O* output = static_cast<const O*>(output_);
...@@ -41,7 +41,7 @@ void AtanImpl_cpu_backward_kernel(const std::size_t inputLenght, ...@@ -41,7 +41,7 @@ void AtanImpl_cpu_backward_kernel(const std::size_t inputLenght,
GI* grad_input = static_cast<GI*>(grad_input_); GI* grad_input = static_cast<GI*>(grad_input_);
// Apply the derivative of atan for each element in the input array // Apply the derivative of atan for each element in the input array
for (size_t i = 0; i < inputLenght; ++i) { for (size_t i = 0; i < inputLength; ++i) {
// dx = dy * (1 / (1 + x^2)) // dx = dy * (1 / (1 + x^2))
grad_input[i] = grad_output[i] * static_cast<O>(1.0 / (1.0 + output[i] * output[i])); grad_input[i] = grad_output[i] * static_cast<O>(1.0 / (1.0 + output[i] * output[i]));
} }
......
...@@ -20,14 +20,14 @@ ...@@ -20,14 +20,14 @@
namespace Aidge { namespace Aidge {
template <class I, class O> template <class I, class O>
void ErfImpl_cpu_forward_kernel(std::size_t inputLenght, void ErfImpl_cpu_forward_kernel(std::size_t inputLength,
const void* input_, const void* input_,
void* output_) { void* output_) {
const I* input = static_cast<const I*>(input_); const I* input = static_cast<const I*>(input_);
O* output = static_cast<O*>(output_); O* output = static_cast<O*>(output_);
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
output[i] = std::erf(input[i]); output[i] = std::erf(input[i]);
} }
} }
......
...@@ -23,14 +23,14 @@ ...@@ -23,14 +23,14 @@
namespace Aidge { namespace Aidge {
template <class I, class O> template <class I, class O>
void HeavisideImplCpuForwardKernel(std::size_t inputLenght, void HeavisideImplCpuForwardKernel(std::size_t inputLength,
const void *input_, const void *input_,
void *output_, void *output_,
const float value) { const float value) {
const I *input = static_cast<const I *>(input_); const I *input = static_cast<const I *>(input_);
O *output = static_cast<O *>(output_); O *output = static_cast<O *>(output_);
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
output[i] = (input[i] > 0) ? 1 : (input[i] == 0 ? value : 0); output[i] = (input[i] > 0) ? 1 : (input[i] == 0 ? value : 0);
} }
} }
......
...@@ -19,7 +19,7 @@ ...@@ -19,7 +19,7 @@
namespace Aidge { namespace Aidge {
template <class I, class O> template <class I, class O>
void LeakyReLUImpl_cpu_forward_kernel(const float negativeSlope_, void LeakyReLUImpl_cpu_forward_kernel(const float negativeSlope_,
std::size_t inputLenght, std::size_t inputLength,
const void* input_, const void* input_,
void* output_) { void* output_) {
...@@ -27,14 +27,14 @@ void LeakyReLUImpl_cpu_forward_kernel(const float negativeSlope_, ...@@ -27,14 +27,14 @@ void LeakyReLUImpl_cpu_forward_kernel(const float negativeSlope_,
O* output = static_cast<O*>(output_); O* output = static_cast<O*>(output_);
const I negativeSlope = static_cast<const I>(negativeSlope_); const I negativeSlope = static_cast<const I>(negativeSlope_);
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
output[i] = (input[i] >= 0) ? input[i] : input[i] * negativeSlope; output[i] = (input[i] >= 0) ? input[i] : input[i] * negativeSlope;
} }
} }
template <class I, class O> template <class I, class O>
void LeakyReLUImpl_cpu_backward_kernel(const float negativeSlope_, void LeakyReLUImpl_cpu_backward_kernel(const float negativeSlope_,
std::size_t inputLenght, std::size_t inputLength,
const void* input_, const void* input_,
void* output_) { void* output_) {
...@@ -42,7 +42,7 @@ void LeakyReLUImpl_cpu_backward_kernel(const float negativeSlope_, ...@@ -42,7 +42,7 @@ void LeakyReLUImpl_cpu_backward_kernel(const float negativeSlope_,
O* output = static_cast<O*>(output_); O* output = static_cast<O*>(output_);
const I negativeSlope = static_cast<const I>(negativeSlope_); const I negativeSlope = static_cast<const I>(negativeSlope_);
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
output[i] = (input[i] > 0) ? input[i] : negativeSlope*input[i]; output[i] = (input[i] > 0) ? input[i] : negativeSlope*input[i];
} }
} }
......
...@@ -18,7 +18,7 @@ ...@@ -18,7 +18,7 @@
namespace Aidge { namespace Aidge {
template <class I, class O> template <class I, class O>
void LnImpl_cpu_forward_kernel(std::size_t inputLenght, void LnImpl_cpu_forward_kernel(std::size_t inputLength,
const void* input_, const void* input_,
void* output_) { void* output_) {
...@@ -26,8 +26,8 @@ void LnImpl_cpu_forward_kernel(std::size_t inputLenght, ...@@ -26,8 +26,8 @@ void LnImpl_cpu_forward_kernel(std::size_t inputLenght,
O* output = static_cast<O*>(output_); O* output = static_cast<O*>(output_);
const float eps = 1.0e-20f; const float eps = 1.0e-20f;
//#pragma omp parallel for if (inputLenght > 1024) //#pragma omp parallel for if (inputLength > 1024)
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
if (input[i] > I(eps)) { if (input[i] > I(eps)) {
output[i] = std::log(input[i]); output[i] = std::log(input[i]);
} else { } else {
...@@ -37,7 +37,7 @@ void LnImpl_cpu_forward_kernel(std::size_t inputLenght, ...@@ -37,7 +37,7 @@ void LnImpl_cpu_forward_kernel(std::size_t inputLenght,
} }
template <class I, class GI, class GO> template <class I, class GI, class GO>
void LnImpl_cpu_backward_kernel(const std::size_t inputLenght, void LnImpl_cpu_backward_kernel(const std::size_t inputLength,
const void* input_, const void* grad_output_, const void* input_, const void* grad_output_,
void* grad_input_) { void* grad_input_) {
...@@ -46,7 +46,7 @@ void LnImpl_cpu_backward_kernel(const std::size_t inputLenght, ...@@ -46,7 +46,7 @@ void LnImpl_cpu_backward_kernel(const std::size_t inputLenght,
GI* grad_input = static_cast<GI*>(grad_input_); GI* grad_input = static_cast<GI*>(grad_input_);
const float eps = 1.0e-20f; const float eps = 1.0e-20f;
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
if (input[i] > I(eps)) { if (input[i] > I(eps)) {
grad_input[i] = grad_output[i] / input[i]; grad_input[i] = grad_output[i] / input[i];
} else { } else {
......
...@@ -26,27 +26,27 @@ ...@@ -26,27 +26,27 @@
namespace Aidge { namespace Aidge {
// Kernels // Kernels
template <class I, class O> template <class I, class O>
void ReLUImpl_cpu_forward_kernel(std::size_t inputLenght, void ReLUImpl_cpu_forward_kernel(std::size_t inputLength,
const void* input_, const void* input_,
void* output_) { void* output_) {
const I* input = static_cast<const I*>(input_); const I* input = static_cast<const I*>(input_);
O* output = static_cast<O*>(output_); O* output = static_cast<O*>(output_);
//#pragma omp parallel for if (inputLenght > 1024) //#pragma omp parallel for if (inputLength > 1024)
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
output[i] = (input[i] > 0) ? input[i] : 0; output[i] = (input[i] > 0) ? input[i] : 0;
} }
} }
template <class I, class GI, class GO> template <class I, class GI, class GO>
void ReLUImpl_cpu_backward_kernel(const std::size_t inputLenght, void ReLUImpl_cpu_backward_kernel(const std::size_t inputLength,
const void* input_, const void* grad_output_, const void* input_, const void* grad_output_,
void* grad_input_) { void* grad_input_) {
const I* input = static_cast<const I*>(input_); const I* input = static_cast<const I*>(input_);
const GO* grad_output = static_cast<const GO*>(grad_output_); const GO* grad_output = static_cast<const GO*>(grad_output_);
GI* grad_input = static_cast<GI*>(grad_input_); GI* grad_input = static_cast<GI*>(grad_input_);
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
grad_input[i] = (input[i] > 0) ? grad_output[i] : 0; grad_input[i] = (input[i] > 0) ? grad_output[i] : 0;
} }
} }
......
...@@ -21,14 +21,14 @@ ...@@ -21,14 +21,14 @@
namespace Aidge { namespace Aidge {
template <class I, class O> template <class I, class O>
void RoundImpl_cpu_forward_kernel(const std::size_t inputLenght, void RoundImpl_cpu_forward_kernel(const std::size_t inputLength,
const void* input_, const void* input_,
void* output_) { void* output_) {
const I* input = static_cast<const I*>(input_); const I* input = static_cast<const I*>(input_);
O* output = static_cast<O*>(output_); O* output = static_cast<O*>(output_);
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
//std::round would not work since it doesn't follow the halves rules (See ONNX Round) //std::round would not work since it doesn't follow the halves rules (See ONNX Round)
output[i] = static_cast<O>(std::nearbyint(static_cast<float>(input[i]))); output[i] = static_cast<O>(std::nearbyint(static_cast<float>(input[i])));
} }
......
...@@ -76,14 +76,14 @@ template <class I, class O> ...@@ -76,14 +76,14 @@ template <class I, class O>
void ScalingImpl_cpu_forward_kernel(const float scalingFactor, void ScalingImpl_cpu_forward_kernel(const float scalingFactor,
const std::size_t quantizedNbBits, const std::size_t quantizedNbBits,
const bool isOutputUnsigned, const bool isOutputUnsigned,
std::size_t inputLenght, std::size_t inputLength,
const void* input_, const void* input_,
void* output_) { void* output_) {
const I* input = static_cast<const I*>(input_); const I* input = static_cast<const I*>(input_);
O* output = static_cast<O*>(output_); O* output = static_cast<O*>(output_);
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
output[i] = static_cast<O>(input[i] * static_cast<I>(scalingFactor)); output[i] = static_cast<O>(input[i] * static_cast<I>(scalingFactor));
if(quantizedNbBits > 0) { if(quantizedNbBits > 0) {
......
...@@ -18,15 +18,15 @@ ...@@ -18,15 +18,15 @@
namespace Aidge { namespace Aidge {
template <class I, class O> template <class I, class O>
void SigmoidImpl_cpu_forward_kernel(std::size_t inputLenght, void SigmoidImpl_cpu_forward_kernel(std::size_t inputLength,
const void* input_, const void* input_,
void* output_) { void* output_) {
const I* input = static_cast<const I*>(input_); const I* input = static_cast<const I*>(input_);
O* output = static_cast<O*>(output_); O* output = static_cast<O*>(output_);
//#pragma omp parallel for if (inputLenght > 1024) //#pragma omp parallel for if (inputLength > 1024)
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
if (input[i] > I(0)) { if (input[i] > I(0)) {
output[i] = O(1) / (O(1) + std::exp(-input[i])); output[i] = O(1) / (O(1) + std::exp(-input[i]));
} else { } else {
...@@ -36,13 +36,13 @@ void SigmoidImpl_cpu_forward_kernel(std::size_t inputLenght, ...@@ -36,13 +36,13 @@ void SigmoidImpl_cpu_forward_kernel(std::size_t inputLenght,
} }
template <class O, class GI, class GO> template <class O, class GI, class GO>
void SigmoidImpl_cpu_backward_kernel(const std::size_t inputLenght, void SigmoidImpl_cpu_backward_kernel(const std::size_t inputLength,
const void* output_, const void* grad_output_, const void* output_, const void* grad_output_,
void* grad_input_) { void* grad_input_) {
const O* output = static_cast<const O*>(output_); const O* output = static_cast<const O*>(output_);
const GO* grad_output = static_cast<const GO*>(grad_output_); const GO* grad_output = static_cast<const GO*>(grad_output_);
GI* grad_input = static_cast<GI*>(grad_input_); GI* grad_input = static_cast<GI*>(grad_input_);
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
grad_input[i] = output[i] * (O(1) - output[i]) * grad_output[i]; grad_input[i] = output[i] * (O(1) - output[i]) * grad_output[i];
} }
} }
......
...@@ -21,27 +21,27 @@ ...@@ -21,27 +21,27 @@
namespace Aidge { namespace Aidge {
template <class I, class O> template <class I, class O>
void SqrtImpl_cpu_forward_kernel(const std::size_t inputLenght, void SqrtImpl_cpu_forward_kernel(const std::size_t inputLength,
const void* input_, const void* input_,
void* output_) { void* output_) {
const I* input = static_cast<const I*>(input_); const I* input = static_cast<const I*>(input_);
O* output = static_cast<O*>(output_); O* output = static_cast<O*>(output_);
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
output[i] = static_cast<O>(std::sqrt(static_cast<float>(input[i]))); output[i] = static_cast<O>(std::sqrt(static_cast<float>(input[i])));
} }
} }
template <class I, class O> template <class I, class O>
void SqrtImpl_cpu_backward_kernel(const std::size_t inputLenght, void SqrtImpl_cpu_backward_kernel(const std::size_t inputLength,
const void* input_, const void* input_,
void* output_) { void* output_) {
const I* input = static_cast<const I*>(input_); const I* input = static_cast<const I*>(input_);
O* output = static_cast<O*>(output_); O* output = static_cast<O*>(output_);
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
output[i] = static_cast<O>(0.5/(std::sqrt(static_cast<float>(input[i])))); output[i] = static_cast<O>(0.5/(std::sqrt(static_cast<float>(input[i]))));
} }
} }
......
...@@ -18,27 +18,27 @@ ...@@ -18,27 +18,27 @@
namespace Aidge { namespace Aidge {
template <class I, class O> template <class I, class O>
void TanhImpl_cpu_forward_kernel(std::size_t inputLenght, void TanhImpl_cpu_forward_kernel(std::size_t inputLength,
const void* input_, const void* input_,
void* output_) { void* output_) {
const I* input = static_cast<const I*>(input_); const I* input = static_cast<const I*>(input_);
O* output = static_cast<O*>(output_); O* output = static_cast<O*>(output_);
//#pragma omp parallel for if (inputLenght > 1024) //#pragma omp parallel for if (inputLength > 1024)
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
output[i] = std::tanh(input[i]); output[i] = std::tanh(input[i]);
} }
} }
template <class O, class GI, class GO> template <class O, class GI, class GO>
void TanhImpl_cpu_backward_kernel(const std::size_t inputLenght, void TanhImpl_cpu_backward_kernel(const std::size_t inputLength,
const void* output_, const void* grad_output_, const void* output_, const void* grad_output_,
void* grad_input_) { void* grad_input_) {
const O* output = static_cast<const O*>(output_); const O* output = static_cast<const O*>(output_);
const GO* grad_output = static_cast<const GO*>(grad_output_); const GO* grad_output = static_cast<const GO*>(grad_output_);
GI* grad_input = static_cast<GI*>(grad_input_); GI* grad_input = static_cast<GI*>(grad_input_);
for (std::size_t i = 0; i < inputLenght; ++i) { for (std::size_t i = 0; i < inputLength; ++i) {
grad_input[i] = (O(1) - output[i] * output[i]) * grad_output[i]; grad_input[i] = (O(1) - output[i] * output[i]) * grad_output[i];
} }
} }
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment