diff --git a/include/aidge/backend/cpu/operator/AbsImpl_kernels.hpp b/include/aidge/backend/cpu/operator/AbsImpl_kernels.hpp index 16e5f9dee26a6f8b760e14a1ad66a40d8f0f7e93..e6474cf2cca459601f8a7a564ce45742e74f01b5 100644 --- a/include/aidge/backend/cpu/operator/AbsImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/AbsImpl_kernels.hpp @@ -20,14 +20,14 @@ namespace Aidge { template <class I, class O> -void AbsImpl_cpu_forward_kernel(std::size_t inputLenght, +void AbsImpl_cpu_forward_kernel(std::size_t inputLength, const void* input_, void* output_) { const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); - for (std::size_t i = 0; i < inputLenght; ++i) { + for (std::size_t i = 0; i < inputLength; ++i) { output[i] = std::abs(input[i]); } } diff --git a/include/aidge/backend/cpu/operator/AtanImpl_kernels.hpp b/include/aidge/backend/cpu/operator/AtanImpl_kernels.hpp index 2a786339503354514416705b61cfedfcc0b7c321..141e5b60ec3680c6c66ef6552704a57a41a8cf27 100644 --- a/include/aidge/backend/cpu/operator/AtanImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/AtanImpl_kernels.hpp @@ -20,20 +20,20 @@ namespace Aidge { template <class I, class O> -void AtanImpl_cpu_forward_kernel(std::size_t inputLenght, +void AtanImpl_cpu_forward_kernel(std::size_t inputLength, const void* input_, void* output_) { const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); - for (size_t i = 0; i < inputLenght; ++i) { + for (size_t i = 0; i < inputLength; ++i) { output[i] = static_cast<O>(atan(input[i])); } } template <class O, class GI, class GO> -void AtanImpl_cpu_backward_kernel(const std::size_t inputLenght, +void AtanImpl_cpu_backward_kernel(const std::size_t inputLength, const void* output_, const void* grad_output_, void* grad_input_) { const O* output = static_cast<const O*>(output_); @@ -41,7 +41,7 @@ void AtanImpl_cpu_backward_kernel(const std::size_t inputLenght, GI* grad_input = static_cast<GI*>(grad_input_); // Apply the derivative of atan for each element in the input array - for (size_t i = 0; i < inputLenght; ++i) { + for (size_t i = 0; i < inputLength; ++i) { // dx = dy * (1 / (1 + x^2)) grad_input[i] = grad_output[i] * static_cast<O>(1.0 / (1.0 + output[i] * output[i])); } diff --git a/include/aidge/backend/cpu/operator/ErfImpl_kernels.hpp b/include/aidge/backend/cpu/operator/ErfImpl_kernels.hpp index 02041f55ce9a1b2476db575b40340b1bb6517ce1..709f4a6ff208aa384478f3787710fdb010835bdf 100644 --- a/include/aidge/backend/cpu/operator/ErfImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/ErfImpl_kernels.hpp @@ -20,14 +20,14 @@ namespace Aidge { template <class I, class O> -void ErfImpl_cpu_forward_kernel(std::size_t inputLenght, +void ErfImpl_cpu_forward_kernel(std::size_t inputLength, const void* input_, void* output_) { const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); - for (std::size_t i = 0; i < inputLenght; ++i) { + for (std::size_t i = 0; i < inputLength; ++i) { output[i] = std::erf(input[i]); } } diff --git a/include/aidge/backend/cpu/operator/HeavisideImpl_kernels.hpp b/include/aidge/backend/cpu/operator/HeavisideImpl_kernels.hpp index 3fd6ca7de348ff18e75b2a88281d4db980b58774..06d7fff8776d342da0467ad7f9d6759f45202151 100644 --- a/include/aidge/backend/cpu/operator/HeavisideImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/HeavisideImpl_kernels.hpp @@ -23,14 +23,14 @@ namespace Aidge { template <class I, class O> -void HeavisideImplCpuForwardKernel(std::size_t inputLenght, +void HeavisideImplCpuForwardKernel(std::size_t inputLength, const void *input_, void *output_, const float value) { const I *input = static_cast<const I *>(input_); O *output = static_cast<O *>(output_); - for (std::size_t i = 0; i < inputLenght; ++i) { + for (std::size_t i = 0; i < inputLength; ++i) { output[i] = (input[i] > 0) ? 1 : (input[i] == 0 ? value : 0); } } diff --git a/include/aidge/backend/cpu/operator/LeakyReLUImpl_kernels.hpp b/include/aidge/backend/cpu/operator/LeakyReLUImpl_kernels.hpp index bc856f703aee8ba422887d43cb96db2132fc4603..7afd8298329a285ce72106dbc766546076cfb37e 100644 --- a/include/aidge/backend/cpu/operator/LeakyReLUImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/LeakyReLUImpl_kernels.hpp @@ -19,7 +19,7 @@ namespace Aidge { template <class I, class O> void LeakyReLUImpl_cpu_forward_kernel(const float negativeSlope_, - std::size_t inputLenght, + std::size_t inputLength, const void* input_, void* output_) { @@ -27,14 +27,14 @@ void LeakyReLUImpl_cpu_forward_kernel(const float negativeSlope_, O* output = static_cast<O*>(output_); const I negativeSlope = static_cast<const I>(negativeSlope_); - for (std::size_t i = 0; i < inputLenght; ++i) { + for (std::size_t i = 0; i < inputLength; ++i) { output[i] = (input[i] >= 0) ? input[i] : input[i] * negativeSlope; } } template <class I, class O> void LeakyReLUImpl_cpu_backward_kernel(const float negativeSlope_, - std::size_t inputLenght, + std::size_t inputLength, const void* input_, void* output_) { @@ -42,7 +42,7 @@ void LeakyReLUImpl_cpu_backward_kernel(const float negativeSlope_, O* output = static_cast<O*>(output_); const I negativeSlope = static_cast<const I>(negativeSlope_); - for (std::size_t i = 0; i < inputLenght; ++i) { + for (std::size_t i = 0; i < inputLength; ++i) { output[i] = (input[i] > 0) ? input[i] : negativeSlope*input[i]; } } diff --git a/include/aidge/backend/cpu/operator/LnImpl_kernels.hpp b/include/aidge/backend/cpu/operator/LnImpl_kernels.hpp index b30b05bb806de08d4e70c67e66979fb3138980df..ee2864b6a650214bf1705a158b0ec3e88a7b7b16 100755 --- a/include/aidge/backend/cpu/operator/LnImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/LnImpl_kernels.hpp @@ -18,7 +18,7 @@ namespace Aidge { template <class I, class O> -void LnImpl_cpu_forward_kernel(std::size_t inputLenght, +void LnImpl_cpu_forward_kernel(std::size_t inputLength, const void* input_, void* output_) { @@ -26,8 +26,8 @@ void LnImpl_cpu_forward_kernel(std::size_t inputLenght, O* output = static_cast<O*>(output_); const float eps = 1.0e-20f; -//#pragma omp parallel for if (inputLenght > 1024) - for (std::size_t i = 0; i < inputLenght; ++i) { +//#pragma omp parallel for if (inputLength > 1024) + for (std::size_t i = 0; i < inputLength; ++i) { if (input[i] > I(eps)) { output[i] = std::log(input[i]); } else { @@ -37,7 +37,7 @@ void LnImpl_cpu_forward_kernel(std::size_t inputLenght, } template <class I, class GI, class GO> -void LnImpl_cpu_backward_kernel(const std::size_t inputLenght, +void LnImpl_cpu_backward_kernel(const std::size_t inputLength, const void* input_, const void* grad_output_, void* grad_input_) { @@ -46,7 +46,7 @@ void LnImpl_cpu_backward_kernel(const std::size_t inputLenght, GI* grad_input = static_cast<GI*>(grad_input_); const float eps = 1.0e-20f; - for (std::size_t i = 0; i < inputLenght; ++i) { + for (std::size_t i = 0; i < inputLength; ++i) { if (input[i] > I(eps)) { grad_input[i] = grad_output[i] / input[i]; } else { diff --git a/include/aidge/backend/cpu/operator/ReLUImpl_kernels.hpp b/include/aidge/backend/cpu/operator/ReLUImpl_kernels.hpp index e39e9b7decd91e392c5db7e9e9bc4ed0f366829d..bb5d7cc35c18db29eb734b5f868b311d3a734bdc 100644 --- a/include/aidge/backend/cpu/operator/ReLUImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/ReLUImpl_kernels.hpp @@ -26,27 +26,27 @@ namespace Aidge { // Kernels template <class I, class O> -void ReLUImpl_cpu_forward_kernel(std::size_t inputLenght, +void ReLUImpl_cpu_forward_kernel(std::size_t inputLength, const void* input_, void* output_) { const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); -//#pragma omp parallel for if (inputLenght > 1024) - for (std::size_t i = 0; i < inputLenght; ++i) { +//#pragma omp parallel for if (inputLength > 1024) + for (std::size_t i = 0; i < inputLength; ++i) { output[i] = (input[i] > 0) ? input[i] : 0; } } template <class I, class GI, class GO> -void ReLUImpl_cpu_backward_kernel(const std::size_t inputLenght, +void ReLUImpl_cpu_backward_kernel(const std::size_t inputLength, const void* input_, const void* grad_output_, void* grad_input_) { const I* input = static_cast<const I*>(input_); const GO* grad_output = static_cast<const GO*>(grad_output_); GI* grad_input = static_cast<GI*>(grad_input_); - for (std::size_t i = 0; i < inputLenght; ++i) { + for (std::size_t i = 0; i < inputLength; ++i) { grad_input[i] = (input[i] > 0) ? grad_output[i] : 0; } } diff --git a/include/aidge/backend/cpu/operator/RoundImpl_kernels.hpp b/include/aidge/backend/cpu/operator/RoundImpl_kernels.hpp index ba9c63bc3618ba81e238d7721147c894b54cf832..7ac4319b2b10241dda2617db7df40a7947eb17ff 100644 --- a/include/aidge/backend/cpu/operator/RoundImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/RoundImpl_kernels.hpp @@ -21,14 +21,14 @@ namespace Aidge { template <class I, class O> -void RoundImpl_cpu_forward_kernel(const std::size_t inputLenght, +void RoundImpl_cpu_forward_kernel(const std::size_t inputLength, const void* input_, void* output_) { const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); - for (std::size_t i = 0; i < inputLenght; ++i) { + for (std::size_t i = 0; i < inputLength; ++i) { //std::round would not work since it doesn't follow the halves rules (See ONNX Round) output[i] = static_cast<O>(std::nearbyint(static_cast<float>(input[i]))); } diff --git a/include/aidge/backend/cpu/operator/ScalingImpl_kernels.hpp b/include/aidge/backend/cpu/operator/ScalingImpl_kernels.hpp index c758c9cf39e76bb370c6d03c28e3a670c280eefc..f9ca00b73193c9dbd54d286125da1f084ae25587 100644 --- a/include/aidge/backend/cpu/operator/ScalingImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/ScalingImpl_kernels.hpp @@ -76,14 +76,14 @@ template <class I, class O> void ScalingImpl_cpu_forward_kernel(const float scalingFactor, const std::size_t quantizedNbBits, const bool isOutputUnsigned, - std::size_t inputLenght, + std::size_t inputLength, const void* input_, void* output_) { const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); - for (std::size_t i = 0; i < inputLenght; ++i) { + for (std::size_t i = 0; i < inputLength; ++i) { output[i] = static_cast<O>(input[i] * static_cast<I>(scalingFactor)); if(quantizedNbBits > 0) { diff --git a/include/aidge/backend/cpu/operator/SigmoidImpl_kernels.hpp b/include/aidge/backend/cpu/operator/SigmoidImpl_kernels.hpp index dfd71ce0a878efbeb779f3a67ad4ccc762bb8363..83ad4575f1aae1cee48a0ba33f2455204b26ac9a 100644 --- a/include/aidge/backend/cpu/operator/SigmoidImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/SigmoidImpl_kernels.hpp @@ -18,15 +18,15 @@ namespace Aidge { template <class I, class O> -void SigmoidImpl_cpu_forward_kernel(std::size_t inputLenght, +void SigmoidImpl_cpu_forward_kernel(std::size_t inputLength, const void* input_, void* output_) { const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); -//#pragma omp parallel for if (inputLenght > 1024) - for (std::size_t i = 0; i < inputLenght; ++i) { +//#pragma omp parallel for if (inputLength > 1024) + for (std::size_t i = 0; i < inputLength; ++i) { if (input[i] > I(0)) { output[i] = O(1) / (O(1) + std::exp(-input[i])); } else { @@ -36,13 +36,13 @@ void SigmoidImpl_cpu_forward_kernel(std::size_t inputLenght, } template <class O, class GI, class GO> -void SigmoidImpl_cpu_backward_kernel(const std::size_t inputLenght, +void SigmoidImpl_cpu_backward_kernel(const std::size_t inputLength, const void* output_, const void* grad_output_, void* grad_input_) { const O* output = static_cast<const O*>(output_); const GO* grad_output = static_cast<const GO*>(grad_output_); GI* grad_input = static_cast<GI*>(grad_input_); - for (std::size_t i = 0; i < inputLenght; ++i) { + for (std::size_t i = 0; i < inputLength; ++i) { grad_input[i] = output[i] * (O(1) - output[i]) * grad_output[i]; } } diff --git a/include/aidge/backend/cpu/operator/SqrtImpl_kernels.hpp b/include/aidge/backend/cpu/operator/SqrtImpl_kernels.hpp index 0464119cad60742bc58c79da984b30776bc7932f..1ce1ef9b675ac6924e5e543f2bdfa4a79e8a8b30 100644 --- a/include/aidge/backend/cpu/operator/SqrtImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/SqrtImpl_kernels.hpp @@ -21,27 +21,27 @@ namespace Aidge { template <class I, class O> -void SqrtImpl_cpu_forward_kernel(const std::size_t inputLenght, +void SqrtImpl_cpu_forward_kernel(const std::size_t inputLength, const void* input_, void* output_) { const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); - for (std::size_t i = 0; i < inputLenght; ++i) { + for (std::size_t i = 0; i < inputLength; ++i) { output[i] = static_cast<O>(std::sqrt(static_cast<float>(input[i]))); } } template <class I, class O> -void SqrtImpl_cpu_backward_kernel(const std::size_t inputLenght, +void SqrtImpl_cpu_backward_kernel(const std::size_t inputLength, const void* input_, void* output_) { const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); - for (std::size_t i = 0; i < inputLenght; ++i) { + for (std::size_t i = 0; i < inputLength; ++i) { output[i] = static_cast<O>(0.5/(std::sqrt(static_cast<float>(input[i])))); } } diff --git a/include/aidge/backend/cpu/operator/TanhImpl_kernels.hpp b/include/aidge/backend/cpu/operator/TanhImpl_kernels.hpp index fdcac210484b11f2220dcc2a6813efed503d1913..49cfe9cbe97320e53b982e388a19e23370423d26 100644 --- a/include/aidge/backend/cpu/operator/TanhImpl_kernels.hpp +++ b/include/aidge/backend/cpu/operator/TanhImpl_kernels.hpp @@ -18,27 +18,27 @@ namespace Aidge { template <class I, class O> -void TanhImpl_cpu_forward_kernel(std::size_t inputLenght, +void TanhImpl_cpu_forward_kernel(std::size_t inputLength, const void* input_, void* output_) { const I* input = static_cast<const I*>(input_); O* output = static_cast<O*>(output_); -//#pragma omp parallel for if (inputLenght > 1024) - for (std::size_t i = 0; i < inputLenght; ++i) { +//#pragma omp parallel for if (inputLength > 1024) + for (std::size_t i = 0; i < inputLength; ++i) { output[i] = std::tanh(input[i]); } } template <class O, class GI, class GO> -void TanhImpl_cpu_backward_kernel(const std::size_t inputLenght, +void TanhImpl_cpu_backward_kernel(const std::size_t inputLength, const void* output_, const void* grad_output_, void* grad_input_) { const O* output = static_cast<const O*>(output_); const GO* grad_output = static_cast<const GO*>(grad_output_); GI* grad_input = static_cast<GI*>(grad_input_); - for (std::size_t i = 0; i < inputLenght; ++i) { + for (std::size_t i = 0; i < inputLength; ++i) { grad_input[i] = (O(1) - output[i] * output[i]) * grad_output[i]; } }