-
Maxence Naud authoredMaxence Naud authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
Test_SubImpl.cpp 14.88 KiB
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <chrono> // std::micro, std::chrono::time_point,
// std::chrono::system_clock
#include <cstddef> // std::size_t
#include <cstdint> // std::uint16_t
#include <functional> // std::multiplies
#include <memory>
#include <numeric> // std::accumulate
#include <random> // std::random_device, std::mt19937
// std::uniform_int_distribution, std::uniform_real_distribution
#include <vector>
#include <catch2/catch_test_macros.hpp>
#include <fmt/core.h>
#include "aidge/backend/cpu/data/TensorImpl.hpp"
#include "aidge/backend/cpu/operator/SubImpl.hpp"
#include "aidge/data/Data.hpp"
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/Sub.hpp"
#include "aidge/operator/OperatorTensor.hpp"
#include "aidge/utils/TensorUtils.hpp"
namespace Aidge {
TEST_CASE("[cpu/operator] Sub", "[Sub][CPU]") {
constexpr std::uint16_t NBTRIALS = 10;
// Create a random number generator
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<float> valueDist(0.1f, 1.1f); // Random float distribution between 0 and 1
std::uniform_int_distribution<std::size_t> dimSizeDist(std::size_t(2), std::size_t(10));
std::uniform_int_distribution<std::size_t> nbDimsDist(std::size_t(1), std::size_t(5));
std::uniform_int_distribution<int> boolDist(0,1);
// Create MatMul Operator
std::shared_ptr<Node> mySub = Sub();
auto op = std::static_pointer_cast<OperatorTensor>(mySub-> getOperator());
op->setDataType(DataType::Float32);
op->setBackend("cpu");
// Create 2 input Tensors
std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>();
op->associateInput(0,T0);
T0->setDataType(DataType::Float32);
T0->setBackend("cpu");
std::shared_ptr<Tensor> T1 = std::make_shared<Tensor>();
op -> associateInput(1,T1);
T1->setDataType(DataType::Float32);
T1->setBackend("cpu");
// Create results Tensor
std::shared_ptr<Tensor> Tres = std::make_shared<Tensor>();
Tres->setDataType(DataType::Float32);
Tres->setBackend("cpu");
// To measure execution time of 'MatMul_Op::forward()' member function call
std::chrono::time_point<std::chrono::system_clock> start;
std::chrono::time_point<std::chrono::system_clock> end;
std::chrono::duration<double, std::micro> duration{};
SECTION("SubImpl_cpu::forward()") {
SECTION("Scalar / Scalar") {
}
SECTION("Scalar / +1-D Tensor") {
}
SECTION("+1-D Tensor / +1-D Tensor - same dimensions") {
std::size_t number_of_operation = 0;
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
// generate 2 random Tensors
const std::size_t nbDims = nbDimsDist(gen);
std::vector<std::size_t> dims;
for (std::size_t i = 0; i < nbDims; ++i) {
dims.push_back(dimSizeDist(gen));
}
const std::size_t nb_elements = std::accumulate(dims.cbegin(), dims.cend(), std::size_t(1), std::multiplies<std::size_t>());
number_of_operation += nb_elements;
// without broadcasting
float* array0 = new float[nb_elements];
float* array1 = new float[nb_elements];
float* result = new float[nb_elements];
for (std::size_t i = 0; i < nb_elements; ++i) {
array0[i] = valueDist(gen);
array1[i] = valueDist(gen);
result[i] = array0[i] - array1[i];
}
// input0
T0->resize(dims);
T0 -> getImpl() -> setRawPtr(array0, nb_elements);
// input1
T1->resize(dims);
T1 -> getImpl() -> setRawPtr(array1, nb_elements);
// results
Tres->resize(dims);
Tres -> getImpl() -> setRawPtr(result, nb_elements);
op->forwardDims();
start = std::chrono::system_clock::now();
mySub->forward();
end = std::chrono::system_clock::now();
duration += std::chrono::duration_cast<std::chrono::microseconds>(end - start);
REQUIRE(approxEq<float>(*(op->getOutput(0)), *Tres));
delete[] array0;
delete[] array1;
delete[] result;
// with broadcasting
}
Log::info("number of elements over time spent: {}\n", (number_of_operation / duration.count()));
Log::info("total time: {}μs\n", duration.count());
}
SECTION("+1-D Tensor / +1-D Tensor - broadcasting") {
std::size_t number_of_operation = 0;
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
// generate 2 random Tensors
// handle dimensions, replace some dimensions with '1' to get broadcasting
constexpr std::size_t nbDims = 4;
std::vector<std::size_t> dims;
for (std::size_t i = 0; i < nbDims; ++i) {
dims.push_back(dimSizeDist(gen));
}
std::vector<std::size_t> dims0 = dims;
std::vector<std::size_t> dims1 = dims;
std::vector<std::size_t> dimsOut = dims;
for (std::size_t i = 0; i < nbDims; ++i) {
if (boolDist(gen)) {
dims0[i] = 1;
}
if (boolDist(gen)) {
dims1[i] = 1;
}
dimsOut[i] = (dims0[i] == 1) ? dims1[i] : dims0[i];
}
// create arrays and fill them with random values
float* array0 = new float[dims0[0]*dims0[1]*dims0[2]*dims0[3]];
float* array1 = new float[dims1[0]*dims1[1]*dims1[2]*dims1[3]];
float* result = new float[dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]];
for (std::size_t i = 0; i < dims0[0]*dims0[1]*dims0[2]*dims0[3]; ++i) {
array0[i] = valueDist(gen);
}
for (std::size_t i = 0; i < dims1[0]*dims1[1]*dims1[2]*dims1[3]; ++i) {
array1[i] = valueDist(gen);
}
// compute true result
const std::size_t strides0[nbDims] = {dims0[1]*dims0[2]*dims0[3], dims0[2]*dims0[3], dims0[3], 1};
const std::size_t strides1[nbDims] = {dims1[1]*dims1[2]*dims1[3], dims1[2]*dims1[3], dims1[3], 1};
for (std::size_t a = 0; a < dimsOut[0]; ++a) {
for (std::size_t b = 0; b < dimsOut[1]; ++b) {
const std::size_t idx0_0 = strides0[0] * ((dims0[0] > 1) ? a : 0)
+ strides0[1] * ((dims0[1] > 1) ? b : 0);
const std::size_t idx1_0 = strides1[0] * ((dims1[0] > 1) ? a : 0)
+ strides1[1] * ((dims1[1] > 1) ? b : 0);
for (std::size_t c = 0; c < dimsOut[2]; ++c) {
const std::size_t idx_out = dimsOut[3] * (c + dimsOut[2] * (b + dimsOut[1] * a));
for (std::size_t d = 0; d < dimsOut[3]; ++d) {
std::size_t idx0 = idx0_0
+ strides0[2] * ((dims0[2] > 1) ? c : 0)
+ ((dims0[3] > 1) ? d : 0);
std::size_t idx1 = idx1_0
+ strides1[2] * ((dims1[2] > 1) ? c : 0)
+ ((dims1[3] > 1) ? d : 0);
result[idx_out + d] = array0[idx0] - array1[idx1];
// std::cout << "(" << idx0 << ", " << idx1 << ") -> " << array0[idx0] << " - " << array1[idx1] << " -> " << idx_out + d << std::endl;
}
}
}
}
// conversion to Aidge::Tensors
// input0
T0->resize(dims0);
T0 -> getImpl() -> setRawPtr(array0, dims0[0]*dims0[1]*dims0[2]*dims0[3]);
// input1
T1->resize(dims1);
T1 -> getImpl() -> setRawPtr(array1, dims1[0]*dims1[1]*dims1[2]*dims1[3]);
// results
Tres->resize(dimsOut);
Tres -> getImpl() -> setRawPtr(result, dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]);
// compute result
op->forwardDims();
start = std::chrono::system_clock::now();
mySub->forward();
end = std::chrono::system_clock::now();
duration += std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// comparison between truth and computed result
REQUIRE(approxEq<float>(*(op->getOutput(0)), *Tres));
delete[] array0;
delete[] array1;
delete[] result;
const std::size_t nb_elements = std::accumulate(dimsOut.cbegin(), dimsOut.cend(), std::size_t(1), std::multiplies<std::size_t>());
number_of_operation += nb_elements;
}
Log::info("number of elements over time spent: {}\n", (number_of_operation / duration.count()));
Log::info("total time: {}μs\n", duration.count());
}
SECTION("+1-D Tensor / 1-D Tensor") {
std::size_t number_of_operation = 0;
std::uniform_int_distribution<std::size_t> nbRemovedDimsDist(std::size_t(1), std::size_t(3));
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
// generate 2 random Tensors
// handle dimensions
constexpr std::size_t nbDims = 4;
std::vector<std::size_t> dims0(4);
for (std::size_t i = 0; i < nbDims; ++i) {
dims0[i] = dimSizeDist(gen);
}
std::vector<std::size_t> dimsOut = dims0;
std::vector<std::size_t> dims1 = dims0;
for (std::size_t i = 0; i < nbDims; ++i) {
if (boolDist(gen)) {
dims1[i] = 1;
}
}
dims1.erase(dims1.cbegin(), dims1.cbegin() + nbRemovedDimsDist(gen));
// create arrays and fill them with random values
float* array0 = new float[dims0[0]*dims0[1]*dims0[2]*dims0[3]];
std::size_t array1_size = std::accumulate(dims1.cbegin(), dims1.cend(), std::size_t(1), std::multiplies<std::size_t>());
float* array1 = new float[array1_size];
float* result = new float[dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]];
for (std::size_t i = 0; i < (dims0[0]*dims0[1]*dims0[2]*dims0[3]); ++i) {
array0[i] = valueDist(gen);
}
for (std::size_t i = 0; i < array1_size; ++i) {
array1[i] = valueDist(gen);
}
// compute true result
auto dims1_tmp = dims1;
dims1_tmp.insert(dims1_tmp.cbegin(), 4 - dims1_tmp.size(), std::size_t(1));
const std::size_t strides0[nbDims] = {dims0[1]*dims0[2]*dims0[3], dims0[2]*dims0[3], dims0[3], 1};
const std::size_t strides1[nbDims] = {dims1_tmp[1]*dims1_tmp[2]*dims1_tmp[3], dims1_tmp[2]*dims1_tmp[3], dims1_tmp[3], 1};
for (std::size_t a = 0; a < dimsOut[0]; ++a) {
for (std::size_t b = 0; b < dimsOut[1]; ++b) {
const std::size_t idx0_0 = strides0[0] * ((dims0[0] > 1) ? a : 0)
+ strides0[1] * ((dims0[1] > 1) ? b : 0);
const std::size_t idx1_0 = strides1[0] * ((dims1_tmp[0] > 1) ? a : 0)
+ strides1[1] * ((dims1_tmp[1] > 1) ? b : 0);
for (std::size_t c = 0; c < dimsOut[2]; ++c) {
const std::size_t idx_out = dimsOut[3] * (c + dimsOut[2] * (b + dimsOut[1] * a));
for (std::size_t d = 0; d < dimsOut[3]; ++d) {
std::size_t idx0 = idx0_0
+ strides0[2] * ((dims0[2] > 1) ? c : 0)
+ ((dims0[3] > 1) ? d : 0);
std::size_t idx1 = idx1_0
+ strides1[2] * ((dims1_tmp[2] > 1) ? c : 0)
+ ((dims1_tmp[3] > 1) ? d : 0);
result[idx_out + d] = array0[idx0] - array1[idx1];
// std::cout << "(" << idx0 << ", " << idx1 << ") -> " << array0[idx0] << " - " << array1[idx1] << " -> " << idx_out + d << std::endl;
}
}
}
}
// conversion to Aidge::Tensors
// input0
T0->resize(dims0);
T0 -> getImpl() -> setRawPtr(array0, dims0[0]*dims0[1]*dims0[2]*dims0[3]);
// input1
T1->resize(dims1);
T1 -> getImpl() -> setRawPtr(array1, array1_size);
// results
Tres->resize(dimsOut);
Tres -> getImpl() -> setRawPtr(result, dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]);
// compute result
op->forwardDims();
start = std::chrono::system_clock::now();
mySub->forward();
end = std::chrono::system_clock::now();
duration += std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// comparison between truth and computed result
REQUIRE(approxEq<float>(*(op->getOutput(0)), *Tres));
delete[] array0;
delete[] array1;
delete[] result;
const std::size_t nb_elements = std::accumulate(dimsOut.cbegin(), dimsOut.cend(), std::size_t(1), std::multiplies<std::size_t>());
number_of_operation += nb_elements;
}
Log::info("number of elements over time spent: {}\n", (number_of_operation / duration.count()));
Log::info("total time: {}μs\n", duration.count());
}
}
}
} // namespace Aidge