/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #include <chrono> // std::micro, std::chrono::time_point, // std::chrono::system_clock #include <cstddef> // std::size_t #include <cstdint> // std::uint16_t #include <functional> // std::multiplies #include <memory> #include <numeric> // std::accumulate #include <random> // std::random_device, std::mt19937 // std::uniform_int_distribution, std::uniform_real_distribution #include <vector> #include <catch2/catch_test_macros.hpp> #include <fmt/core.h> #include "aidge/backend/cpu/data/TensorImpl.hpp" #include "aidge/backend/cpu/operator/SubImpl.hpp" #include "aidge/data/Data.hpp" #include "aidge/data/Tensor.hpp" #include "aidge/operator/Sub.hpp" #include "aidge/operator/OperatorTensor.hpp" #include "aidge/utils/TensorUtils.hpp" namespace Aidge { TEST_CASE("[cpu/operator] Sub", "[Sub][CPU]") { constexpr std::uint16_t NBTRIALS = 10; // Create a random number generator std::random_device rd; std::mt19937 gen(rd()); std::uniform_real_distribution<float> valueDist(0.1f, 1.1f); // Random float distribution between 0 and 1 std::uniform_int_distribution<std::size_t> dimSizeDist(std::size_t(2), std::size_t(10)); std::uniform_int_distribution<std::size_t> nbDimsDist(std::size_t(1), std::size_t(5)); std::uniform_int_distribution<int> boolDist(0,1); // Create MatMul Operator std::shared_ptr<Node> mySub = Sub(); auto op = std::static_pointer_cast<OperatorTensor>(mySub-> getOperator()); op->setDataType(DataType::Float32); op->setBackend("cpu"); // Create 2 input Tensors std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>(); op->associateInput(0,T0); T0->setDataType(DataType::Float32); T0->setBackend("cpu"); std::shared_ptr<Tensor> T1 = std::make_shared<Tensor>(); op -> associateInput(1,T1); T1->setDataType(DataType::Float32); T1->setBackend("cpu"); // Create results Tensor std::shared_ptr<Tensor> Tres = std::make_shared<Tensor>(); Tres->setDataType(DataType::Float32); Tres->setBackend("cpu"); // To measure execution time of 'MatMul_Op::forward()' member function call std::chrono::time_point<std::chrono::system_clock> start; std::chrono::time_point<std::chrono::system_clock> end; std::chrono::duration<double, std::micro> duration{}; SECTION("SubImpl_cpu::forward()") { SECTION("Scalar / Scalar") { } SECTION("Scalar / +1-D Tensor") { } SECTION("+1-D Tensor / +1-D Tensor - same dimensions") { std::size_t number_of_operation = 0; for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { // generate 2 random Tensors const std::size_t nbDims = nbDimsDist(gen); std::vector<std::size_t> dims; for (std::size_t i = 0; i < nbDims; ++i) { dims.push_back(dimSizeDist(gen)); } const std::size_t nb_elements = std::accumulate(dims.cbegin(), dims.cend(), std::size_t(1), std::multiplies<std::size_t>()); number_of_operation += nb_elements; // without broadcasting float* array0 = new float[nb_elements]; float* array1 = new float[nb_elements]; float* result = new float[nb_elements]; for (std::size_t i = 0; i < nb_elements; ++i) { array0[i] = valueDist(gen); array1[i] = valueDist(gen); result[i] = array0[i] - array1[i]; } // input0 T0->resize(dims); T0 -> getImpl() -> setRawPtr(array0, nb_elements); // input1 T1->resize(dims); T1 -> getImpl() -> setRawPtr(array1, nb_elements); // results Tres->resize(dims); Tres -> getImpl() -> setRawPtr(result, nb_elements); op->forwardDims(); start = std::chrono::system_clock::now(); mySub->forward(); end = std::chrono::system_clock::now(); duration += std::chrono::duration_cast<std::chrono::microseconds>(end - start); REQUIRE(approxEq<float>(*(op->getOutput(0)), *Tres)); delete[] array0; delete[] array1; delete[] result; // with broadcasting } Log::info("number of elements over time spent: {}\n", (number_of_operation / duration.count())); Log::info("total time: {}μs\n", duration.count()); } SECTION("+1-D Tensor / +1-D Tensor - broadcasting") { std::size_t number_of_operation = 0; for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { // generate 2 random Tensors // handle dimensions, replace some dimensions with '1' to get broadcasting constexpr std::size_t nbDims = 4; std::vector<std::size_t> dims; for (std::size_t i = 0; i < nbDims; ++i) { dims.push_back(dimSizeDist(gen)); } std::vector<std::size_t> dims0 = dims; std::vector<std::size_t> dims1 = dims; std::vector<std::size_t> dimsOut = dims; for (std::size_t i = 0; i < nbDims; ++i) { if (boolDist(gen)) { dims0[i] = 1; } if (boolDist(gen)) { dims1[i] = 1; } dimsOut[i] = (dims0[i] == 1) ? dims1[i] : dims0[i]; } // create arrays and fill them with random values float* array0 = new float[dims0[0]*dims0[1]*dims0[2]*dims0[3]]; float* array1 = new float[dims1[0]*dims1[1]*dims1[2]*dims1[3]]; float* result = new float[dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]]; for (std::size_t i = 0; i < dims0[0]*dims0[1]*dims0[2]*dims0[3]; ++i) { array0[i] = valueDist(gen); } for (std::size_t i = 0; i < dims1[0]*dims1[1]*dims1[2]*dims1[3]; ++i) { array1[i] = valueDist(gen); } // compute true result const std::size_t strides0[nbDims] = {dims0[1]*dims0[2]*dims0[3], dims0[2]*dims0[3], dims0[3], 1}; const std::size_t strides1[nbDims] = {dims1[1]*dims1[2]*dims1[3], dims1[2]*dims1[3], dims1[3], 1}; for (std::size_t a = 0; a < dimsOut[0]; ++a) { for (std::size_t b = 0; b < dimsOut[1]; ++b) { const std::size_t idx0_0 = strides0[0] * ((dims0[0] > 1) ? a : 0) + strides0[1] * ((dims0[1] > 1) ? b : 0); const std::size_t idx1_0 = strides1[0] * ((dims1[0] > 1) ? a : 0) + strides1[1] * ((dims1[1] > 1) ? b : 0); for (std::size_t c = 0; c < dimsOut[2]; ++c) { const std::size_t idx_out = dimsOut[3] * (c + dimsOut[2] * (b + dimsOut[1] * a)); for (std::size_t d = 0; d < dimsOut[3]; ++d) { std::size_t idx0 = idx0_0 + strides0[2] * ((dims0[2] > 1) ? c : 0) + ((dims0[3] > 1) ? d : 0); std::size_t idx1 = idx1_0 + strides1[2] * ((dims1[2] > 1) ? c : 0) + ((dims1[3] > 1) ? d : 0); result[idx_out + d] = array0[idx0] - array1[idx1]; // std::cout << "(" << idx0 << ", " << idx1 << ") -> " << array0[idx0] << " - " << array1[idx1] << " -> " << idx_out + d << std::endl; } } } } // conversion to Aidge::Tensors // input0 T0->resize(dims0); T0 -> getImpl() -> setRawPtr(array0, dims0[0]*dims0[1]*dims0[2]*dims0[3]); // input1 T1->resize(dims1); T1 -> getImpl() -> setRawPtr(array1, dims1[0]*dims1[1]*dims1[2]*dims1[3]); // results Tres->resize(dimsOut); Tres -> getImpl() -> setRawPtr(result, dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]); // compute result op->forwardDims(); start = std::chrono::system_clock::now(); mySub->forward(); end = std::chrono::system_clock::now(); duration += std::chrono::duration_cast<std::chrono::microseconds>(end - start); // comparison between truth and computed result REQUIRE(approxEq<float>(*(op->getOutput(0)), *Tres)); delete[] array0; delete[] array1; delete[] result; const std::size_t nb_elements = std::accumulate(dimsOut.cbegin(), dimsOut.cend(), std::size_t(1), std::multiplies<std::size_t>()); number_of_operation += nb_elements; } Log::info("number of elements over time spent: {}\n", (number_of_operation / duration.count())); Log::info("total time: {}μs\n", duration.count()); } SECTION("+1-D Tensor / 1-D Tensor") { std::size_t number_of_operation = 0; std::uniform_int_distribution<std::size_t> nbRemovedDimsDist(std::size_t(1), std::size_t(3)); for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) { // generate 2 random Tensors // handle dimensions constexpr std::size_t nbDims = 4; std::vector<std::size_t> dims0(4); for (std::size_t i = 0; i < nbDims; ++i) { dims0[i] = dimSizeDist(gen); } std::vector<std::size_t> dimsOut = dims0; std::vector<std::size_t> dims1 = dims0; for (std::size_t i = 0; i < nbDims; ++i) { if (boolDist(gen)) { dims1[i] = 1; } } dims1.erase(dims1.cbegin(), dims1.cbegin() + nbRemovedDimsDist(gen)); // create arrays and fill them with random values float* array0 = new float[dims0[0]*dims0[1]*dims0[2]*dims0[3]]; std::size_t array1_size = std::accumulate(dims1.cbegin(), dims1.cend(), std::size_t(1), std::multiplies<std::size_t>()); float* array1 = new float[array1_size]; float* result = new float[dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]]; for (std::size_t i = 0; i < (dims0[0]*dims0[1]*dims0[2]*dims0[3]); ++i) { array0[i] = valueDist(gen); } for (std::size_t i = 0; i < array1_size; ++i) { array1[i] = valueDist(gen); } // compute true result auto dims1_tmp = dims1; dims1_tmp.insert(dims1_tmp.cbegin(), 4 - dims1_tmp.size(), std::size_t(1)); const std::size_t strides0[nbDims] = {dims0[1]*dims0[2]*dims0[3], dims0[2]*dims0[3], dims0[3], 1}; const std::size_t strides1[nbDims] = {dims1_tmp[1]*dims1_tmp[2]*dims1_tmp[3], dims1_tmp[2]*dims1_tmp[3], dims1_tmp[3], 1}; for (std::size_t a = 0; a < dimsOut[0]; ++a) { for (std::size_t b = 0; b < dimsOut[1]; ++b) { const std::size_t idx0_0 = strides0[0] * ((dims0[0] > 1) ? a : 0) + strides0[1] * ((dims0[1] > 1) ? b : 0); const std::size_t idx1_0 = strides1[0] * ((dims1_tmp[0] > 1) ? a : 0) + strides1[1] * ((dims1_tmp[1] > 1) ? b : 0); for (std::size_t c = 0; c < dimsOut[2]; ++c) { const std::size_t idx_out = dimsOut[3] * (c + dimsOut[2] * (b + dimsOut[1] * a)); for (std::size_t d = 0; d < dimsOut[3]; ++d) { std::size_t idx0 = idx0_0 + strides0[2] * ((dims0[2] > 1) ? c : 0) + ((dims0[3] > 1) ? d : 0); std::size_t idx1 = idx1_0 + strides1[2] * ((dims1_tmp[2] > 1) ? c : 0) + ((dims1_tmp[3] > 1) ? d : 0); result[idx_out + d] = array0[idx0] - array1[idx1]; // std::cout << "(" << idx0 << ", " << idx1 << ") -> " << array0[idx0] << " - " << array1[idx1] << " -> " << idx_out + d << std::endl; } } } } // conversion to Aidge::Tensors // input0 T0->resize(dims0); T0 -> getImpl() -> setRawPtr(array0, dims0[0]*dims0[1]*dims0[2]*dims0[3]); // input1 T1->resize(dims1); T1 -> getImpl() -> setRawPtr(array1, array1_size); // results Tres->resize(dimsOut); Tres -> getImpl() -> setRawPtr(result, dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]); // compute result op->forwardDims(); start = std::chrono::system_clock::now(); mySub->forward(); end = std::chrono::system_clock::now(); duration += std::chrono::duration_cast<std::chrono::microseconds>(end - start); // comparison between truth and computed result REQUIRE(approxEq<float>(*(op->getOutput(0)), *Tres)); delete[] array0; delete[] array1; delete[] result; const std::size_t nb_elements = std::accumulate(dimsOut.cbegin(), dimsOut.cend(), std::size_t(1), std::multiplies<std::size_t>()); number_of_operation += nb_elements; } Log::info("number of elements over time spent: {}\n", (number_of_operation / duration.count())); Log::info("total time: {}μs\n", duration.count()); } } } } // namespace Aidge