-
Olivier BICHLER authoredOlivier BICHLER authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
ConvDepthWiseImpl.cpp 4.25 KiB
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp"
#include <memory>
#include <vector>
#include "aidge/backend/cpu/data/GetCPUPtr.h"
#include "aidge/backend/cpu/operator/ConvDepthWiseImpl_kernels.hpp"
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/ConvDepthWise.hpp"
#include "aidge/utils/Log.hpp"
#include "aidge/utils/Types.h"
template <>
void Aidge::ConvDepthWiseImpl1D_cpu::forward() {
const auto& op_ = dynamic_cast<const ConvDepthWise_Op<1>&>(mOp);
AIDGE_ASSERT(op_.getInput(0), "missing input #0 in ConvDepthWise Operator");
AIDGE_ASSERT(op_.getInput(1), "missing input #1 in ConvDepthWise Operator");
AIDGE_ASSERT((op_.getInput(0)->nbDims() == 3), "support for 4-dimensions tensors only");
// Find the correct kernel type
const auto impl = Registrar<ConvDepthWiseImpl1D_cpu>::create(getBestMatch(getRequiredSpec()));
// Convert input data (no overhead if not needed!)
// TODO: right now, if needed, memory will be allocated/deallocated at each
// call to forward(). We might put the following shared_ptr as members of
// this class to avoid that.
std::shared_ptr<Tensor> input0Fallback, input1Fallback, input2Fallback;
const auto& input0 = op_.getInput(0)->refCastFrom(input0Fallback, *op_.getOutput(0));
const auto& input1 = op_.getInput(1)->refCastFrom(input1Fallback, *op_.getOutput(0));
const auto& input2 = (op_.getInput(2)) ? op_.getInput(2)->refCastFrom(input2Fallback, *op_.getOutput(0)) : Tensor();
// Call kernel
impl.forward(op_.strideDims(),
op_.dilationDims(),
op_.kernelDims(), // Conv attributes
op_.getInput(0)->template dims<3>(), // input dimensions
input0.getImpl()->rawPtr(), // input
input1.getImpl()->rawPtr(), // weight
(op_.getInput(2)) ? input2.getImpl()->rawPtr() : nullptr, // bias
getCPUPtr(mOp.getRawOutput(0)) // output
);
}
template <>
void Aidge::ConvDepthWiseImpl1D_cpu::backward() {
AIDGE_THROW_OR_ABORT(std::runtime_error, "Backward not yet implemented for ConvDepthWise_Op<1> on backend cpu");
}
template <>
void Aidge::ConvDepthWiseImpl2D_cpu::forward() {
const auto& op_ = dynamic_cast<const ConvDepthWise_Op<2>&>(mOp);
AIDGE_ASSERT(op_.getInput(0), "missing input #0 in ConvDepthWise Operator");
AIDGE_ASSERT(op_.getInput(1), "missing input #1 in ConvDepthWise Operator");
AIDGE_ASSERT(op_.getInput(2), "missing input #2 in ConvDepthWise Operator");
AIDGE_ASSERT((op_.getInput(0)->nbDims() == 4), "support for 4-dimensions tensors only");
// Find the correct kernel type
const auto impl = Registrar<ConvDepthWiseImpl2D_cpu>::create(getBestMatch(getRequiredSpec()));
// Convert input data (no overhead if not needed!)
// TODO: right now, if needed, memory will be allocated/deallocated at each
// call to forward(). We might put the following shared_ptr as members of
// this class to avoid that.
std::shared_ptr<Tensor> input0Fallback, input1Fallback, input2Fallback;
const auto& input0 = op_.getInput(0)->refCastFrom(input0Fallback, *op_.getOutput(0));
const auto& input1 = op_.getInput(1)->refCastFrom(input1Fallback, *op_.getOutput(0));
const auto& input2 = op_.getInput(2) ? op_.getInput(2)->refCastFrom(input2Fallback, *op_.getOutput(0)) : Tensor();
// Call kernel
impl.forward(op_.strideDims(),
op_.dilationDims(),
op_.kernelDims(),
op_.getInput(0)->template dims<4>(),
input0.getImpl()->rawPtr(),
input1.getImpl()->rawPtr(),
op_.getInput(2) ? input2.getImpl()->rawPtr() : nullptr,
getCPUPtr(op_.getRawOutput(0)));
}
template <>
void Aidge::ConvDepthWiseImpl2D_cpu::backward() {
AIDGE_THROW_OR_ABORT(std::runtime_error, "Backward not yet implemented for ConvDepthWise_Op<2> on backend cpu");
}