/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp" #include <memory> #include <vector> #include "aidge/backend/cpu/data/GetCPUPtr.h" #include "aidge/backend/cpu/operator/ConvDepthWiseImpl_kernels.hpp" #include "aidge/data/Tensor.hpp" #include "aidge/operator/ConvDepthWise.hpp" #include "aidge/utils/Log.hpp" #include "aidge/utils/Types.h" template <> void Aidge::ConvDepthWiseImpl1D_cpu::forward() { const auto& op_ = dynamic_cast<const ConvDepthWise_Op<1>&>(mOp); AIDGE_ASSERT(op_.getInput(0), "missing input #0 in ConvDepthWise Operator"); AIDGE_ASSERT(op_.getInput(1), "missing input #1 in ConvDepthWise Operator"); AIDGE_ASSERT((op_.getInput(0)->nbDims() == 3), "support for 4-dimensions tensors only"); // Find the correct kernel type const auto impl = Registrar<ConvDepthWiseImpl1D_cpu>::create(getBestMatch(getRequiredSpec())); // Convert input data (no overhead if not needed!) // TODO: right now, if needed, memory will be allocated/deallocated at each // call to forward(). We might put the following shared_ptr as members of // this class to avoid that. std::shared_ptr<Tensor> input0Fallback, input1Fallback, input2Fallback; const auto& input0 = op_.getInput(0)->refCastFrom(input0Fallback, *op_.getOutput(0)); const auto& input1 = op_.getInput(1)->refCastFrom(input1Fallback, *op_.getOutput(0)); const auto& input2 = (op_.getInput(2)) ? op_.getInput(2)->refCastFrom(input2Fallback, *op_.getOutput(0)) : Tensor(); // Call kernel impl.forward(op_.strideDims(), op_.dilationDims(), op_.kernelDims(), // Conv attributes op_.getInput(0)->template dims<3>(), // input dimensions input0.getImpl()->rawPtr(), // input input1.getImpl()->rawPtr(), // weight (op_.getInput(2)) ? input2.getImpl()->rawPtr() : nullptr, // bias getCPUPtr(mOp.getRawOutput(0)) // output ); } template <> void Aidge::ConvDepthWiseImpl1D_cpu::backward() { AIDGE_THROW_OR_ABORT(std::runtime_error, "Backward not yet implemented for ConvDepthWise_Op<1> on backend cpu"); } template <> void Aidge::ConvDepthWiseImpl2D_cpu::forward() { const auto& op_ = dynamic_cast<const ConvDepthWise_Op<2>&>(mOp); AIDGE_ASSERT(op_.getInput(0), "missing input #0 in ConvDepthWise Operator"); AIDGE_ASSERT(op_.getInput(1), "missing input #1 in ConvDepthWise Operator"); AIDGE_ASSERT(op_.getInput(2), "missing input #2 in ConvDepthWise Operator"); AIDGE_ASSERT((op_.getInput(0)->nbDims() == 4), "support for 4-dimensions tensors only"); // Find the correct kernel type const auto impl = Registrar<ConvDepthWiseImpl2D_cpu>::create(getBestMatch(getRequiredSpec())); // Convert input data (no overhead if not needed!) // TODO: right now, if needed, memory will be allocated/deallocated at each // call to forward(). We might put the following shared_ptr as members of // this class to avoid that. std::shared_ptr<Tensor> input0Fallback, input1Fallback, input2Fallback; const auto& input0 = op_.getInput(0)->refCastFrom(input0Fallback, *op_.getOutput(0)); const auto& input1 = op_.getInput(1)->refCastFrom(input1Fallback, *op_.getOutput(0)); const auto& input2 = op_.getInput(2) ? op_.getInput(2)->refCastFrom(input2Fallback, *op_.getOutput(0)) : Tensor(); // Call kernel impl.forward(op_.strideDims(), op_.dilationDims(), op_.kernelDims(), op_.getInput(0)->template dims<4>(), input0.getImpl()->rawPtr(), input1.getImpl()->rawPtr(), op_.getInput(2) ? input2.getImpl()->rawPtr() : nullptr, getCPUPtr(op_.getRawOutput(0))); } template <> void Aidge::ConvDepthWiseImpl2D_cpu::backward() { AIDGE_THROW_OR_ABORT(std::runtime_error, "Backward not yet implemented for ConvDepthWise_Op<2> on backend cpu"); }