Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef __AIDGE_CPU_OPERATOR_ADDIMPL_H__
#define __AIDGE_CPU_OPERATOR_ADDIMPL_H__
#include "backend/OperatorImpl.hpp"
#include "operator/Add.hpp"
#include "utils/Registrar.hpp"
#include "utils/Types.h"
#include <memory>
#include <vector>
namespace Aidge {
// class Add_Op<2>;
// compute kernel registry for forward and backward
template <DimIdx_t NUM>
class AddImplForward_cpu;
template <DimIdx_t NUM>
class AddImplBackward_cpu;
template <>
class AddImplForward_cpu<1>
: public Registrable<AddImplForward_cpu<1>, std::tuple<DataType, DataType>, void(const std::size_t, const void*, void*)> {};
template <>
class AddImplBackward_cpu<1>
: public Registrable<AddImplBackward_cpu<1>, std::tuple<DataType, DataType>, void(const std::size_t, const void*, void*)> {};
template <>
class AddImplForward_cpu<2> : public Registrable<AddImplForward_cpu<2>, std::tuple<DataType, DataType, DataType>,
void(const std::size_t, const void*, const void*, void*)> {};
template <>
class AddImplBackward_cpu<2> : public Registrable<AddImplBackward_cpu<2>, std::tuple<DataType, DataType, DataType>,
void(const std::size_t, const void*, const void*, void*)> {};
template <>
class AddImplForward_cpu<3> : public Registrable<AddImplForward_cpu<3>, std::tuple<DataType, DataType, DataType, DataType>,
void(const std::size_t, const void*, const void*, const void*, void*)> {
};
template <>
class AddImplBackward_cpu<3>
: public Registrable<AddImplBackward_cpu<3>, std::tuple<DataType, DataType, DataType, DataType>,
void(const std::size_t, const void*, const void*, const void*, void*)> {};
template <DimIdx_t NUM>
class AddImpl_cpu : public OperatorImpl {
private:
const Add_Op<NUM>& mOp;
std::array<NbElts_t, NUM> mNbConsumedData = {};
std::array<NbElts_t, 1> mNbProducedData = {};
public:
AddImpl_cpu(const Add_Op<NUM>& op) : mOp(op) {}
static std::unique_ptr<AddImpl_cpu<NUM>> create(const Add_Op<NUM>& op) {
return std::make_unique<AddImpl_cpu<NUM>>(op);
}
public:
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final {
assert(mOp.getInput(inputIdx) && "requires valid input");
// Requires the whole tensors
const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getInput(inputIdx))->dims();
return std::accumulate(inputDims.begin(), inputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>());
}
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final {
// for the direct convolution algorithm, convolutions can be in-place, if there is no padding!
return 0;
}
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx, const std::vector<DimSize_t>& inputsSize) const override final {
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims();
return std::accumulate(outputDims.begin(), outputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>());
}
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final {
assert(inputIdx < mNbConsumedData.size());
return mNbConsumedData[inputIdx];
}
NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final {
assert(outputIdx < mNbProducedData.size());
return mNbProducedData[outputIdx];
}
void forward() {
// nothing
}
void backward() { printf("Not implemented yet.\n"); }
};
template <>
class AddImpl_cpu<1> : public OperatorImpl {
private:
const Add_Op<1>& mOp;
std::array<NbElts_t, 1> mNbConsumedData;
std::array<NbElts_t, 1> mNbProducedData;
public:
AddImpl_cpu(const Add_Op<1>& op) : mOp(op), mNbConsumedData({0}), mNbProducedData({0}) {}
static std::unique_ptr<AddImpl_cpu<1>> create(const Add_Op<1>& op) {
return std::make_unique<AddImpl_cpu<1>>(op);
}
public:
NbElts_t getNbRequiredData(const IOIndex_t /*inputIdx*/) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx,
__attribute__((unused)) const std::vector<DimSize_t> &inputsSize) const override final;
NbElts_t getNbConsumedData(const IOIndex_t /*inputIdx*/) const override final;
NbElts_t getNbProducedData(const IOIndex_t /*outputIdx*/) const override final;
void forward();
void backward();
};
template <>
class AddImpl_cpu<2> : public OperatorImpl {
private:
const Add_Op<2>& mOp;
std::array<NbElts_t, 2> mNbConsumedData;
std::array<NbElts_t, 1> mNbProducedData;
public:
AddImpl_cpu(const Add_Op<2>& op) : mOp(op), mNbConsumedData({0, 0}), mNbProducedData({0}) {}
static std::unique_ptr<AddImpl_cpu<2>> create(const Add_Op<2>& op) {
return std::make_unique<AddImpl_cpu<2>>(op);
}
public:
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx,
__attribute__((unused)) const std::vector<DimSize_t>& inputsSize) const override final;
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(const IOIndex_t /*outputIdx*/) const override final;
void forward();
void backward();
};
template <>
class AddImpl_cpu<3> : public OperatorImpl {
private:
const Add_Op<3>& mOp;
std::array<NbElts_t, 3> mNbConsumedData;
std::array<NbElts_t, 1> mNbProducedData;
public:
AddImpl_cpu(const Add_Op<3>& op) : mOp(op), mNbConsumedData({0, 0, 0}), mNbProducedData({0}) {}
static std::unique_ptr<AddImpl_cpu<3>> create(const Add_Op<3>& op) {
return std::make_unique<AddImpl_cpu<3>>(op);
}
public:
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx, const std::vector<DimSize_t>& /*inputsSize*/) const override final;
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final;
void forward();
void backward();
};
namespace {
static Registrar<Add_Op<1>> registrarAddImpl1I_cpu("cpu", Aidge::AddImpl_cpu<1>::create);
static Registrar<Add_Op<2>> registrarAddImpl2I_cpu("cpu", Aidge::AddImpl_cpu<2>::create);
static Registrar<Add_Op<3>> registrarAddImpl3I_cpu("cpu", Aidge::AddImpl_cpu<3>::create);
} // namespace
} // namespace Aidge
#endif /* __AIDGE_CPU_OPERATOR_ADDIMPL_H__ */