Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef __AIDGE_CPU_OPERATOR_ADDIMPL_H__
#define __AIDGE_CPU_OPERATOR_ADDIMPL_H__
#include "backend/OperatorImpl.hpp"
#include "operator/Add.hpp"
#include "utils/Registrar.hpp"
#include "utils/Types.h"
#include <memory>
#include <vector>
namespace Aidge {
// class Add_Op<2>;
// compute kernel registry for forward and backward
template <DimIdx_t NUM>
class AddImplForward_cpu;
template <DimIdx_t NUM>
class AddImplBackward_cpu;
template <>
class AddImplForward_cpu<1>
: public Registrable<AddImplForward_cpu<1>, std::tuple<DataType, DataType>, void(const std::size_t, const void*, void*)> {};
template <>
class AddImplBackward_cpu<1>
: public Registrable<AddImplBackward_cpu<1>, std::tuple<DataType, DataType>, void(const std::size_t, const void*, void*)> {};
template <>
class AddImplForward_cpu<2> : public Registrable<AddImplForward_cpu<2>, std::tuple<DataType, DataType, DataType>,
void(const std::size_t, const void*, const void*, void*)> {};
template <>
class AddImplBackward_cpu<2> : public Registrable<AddImplBackward_cpu<2>, std::tuple<DataType, DataType, DataType>,
void(const std::size_t, const void*, const void*, void*)> {};
template <>
class AddImplForward_cpu<3> : public Registrable<AddImplForward_cpu<3>, std::tuple<DataType, DataType, DataType, DataType>,
void(const std::size_t, const void*, const void*, const void*, void*)> {
};
template <>
class AddImplBackward_cpu<3>
: public Registrable<AddImplBackward_cpu<3>, std::tuple<DataType, DataType, DataType, DataType>,
void(const std::size_t, const void*, const void*, const void*, void*)> {};
template <DimIdx_t NUM>
class AddImpl_cpu : public OperatorImpl {
private:
const Add_Op<NUM>& mOp;
std::array<NbElts_t, NUM> mNbConsumedData = {};
std::array<NbElts_t, 1> mNbProducedData = {};
public:
AddImpl_cpu(const Add_Op<NUM>& op) : mOp(op) {}
static std::unique_ptr<AddImpl_cpu<NUM>> create(const Add_Op<NUM>& op) {
return std::make_unique<AddImpl_cpu<NUM>>(op);
}
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final {
assert(mOp.getInput(inputIdx) && "requires valid input");
// Requires the whole tensors
const auto& inputDims = std::static_pointer_cast<Tensor>(mOp.getInput(inputIdx))->dims();
return std::accumulate(inputDims.begin(), inputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>());
}
NbElts_t getNbRequiredProtected(IOIndex_t inputIdx) const override final {
// for the direct convolution algorithm, convolutions can be in-place, if there is no padding!
return 0;
}
NbElts_t getRequiredMemory(IOIndex_t outputIdx, const std::vector<DimSize_t>& inputsSize) const override final {
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims();
return std::accumulate(outputDims.begin(), outputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>());
}
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final {
assert(inputIdx < mNbConsumedData.size());
return mNbConsumedData[inputIdx];
}
NbElts_t getNbProducedData(IOIndex_t outputIdx) const override final {
assert(outputIdx < mNbProducedData.size());
return mNbProducedData[outputIdx];
}
void forward() {
// nothing
}
void backward() { printf("Not implemented yet.\n"); }
};
template <>
class AddImpl_cpu<1> : public OperatorImpl {
private:
const Add_Op<1>& mOp;
std::array<NbElts_t, 1> mNbConsumedData;
std::array<NbElts_t, 1> mNbProducedData;
public:
AddImpl_cpu(const Add_Op<1>& op) : mOp(op), mNbConsumedData({0}), mNbProducedData({0}) {}
static std::unique_ptr<AddImpl_cpu<1>> create(const Add_Op<1>& op) {
return std::make_unique<AddImpl_cpu<1>>(op);
}
public:
NbElts_t getNbRequiredData(IOIndex_t /*inputIdx*/) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t /*inputIdx*/) const override final;
NbElts_t getRequiredMemory(IOIndex_t /*outputIdx*/,
const std::vector<DimSize_t>& /*inputsSize*/) const override final;
NbElts_t getNbConsumedData(IOIndex_t /*inputIdx*/) const override final;
NbElts_t getNbProducedData(IOIndex_t /*outputIdx*/) const override final;
void forward();
void backward();
};
template <>
class AddImpl_cpu<2> : public OperatorImpl {
private:
const Add_Op<2>& mOp;
std::array<NbElts_t, 2> mNbConsumedData;
std::array<NbElts_t, 1> mNbProducedData;
public:
AddImpl_cpu(const Add_Op<2>& op) : mOp(op), mNbConsumedData({0, 0}), mNbProducedData({0}) {}
static std::unique_ptr<AddImpl_cpu<2>> create(const Add_Op<2>& op) {
return std::make_unique<AddImpl_cpu<2>>(op);
}
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(IOIndex_t /*outputIdx*/,
const std::vector<DimSize_t>& /*inputsSize*/) const override final;
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(IOIndex_t /*outputIdx*/) const override final;
void forward();
void backward();
};
template <>
class AddImpl_cpu<3> : public OperatorImpl {
private:
const Add_Op<3>& mOp;
std::array<NbElts_t, 3> mNbConsumedData;
std::array<NbElts_t, 1> mNbProducedData;
public:
AddImpl_cpu(const Add_Op<3>& op) : mOp(op), mNbConsumedData({0, 0, 0}), mNbProducedData({0}) {}
static std::unique_ptr<AddImpl_cpu<3>> create(const Add_Op<3>& op) {
return std::make_unique<AddImpl_cpu<3>>(op);
}
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t /*inputIdx*/) const override final;
NbElts_t getRequiredMemory(IOIndex_t outputIdx, const std::vector<DimSize_t>& /*inputsSize*/) const override final;
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(IOIndex_t outputIdx) const override final;
void forward();
void backward();
};
namespace {
static Registrar<Add_Op<1>> registrarAddImpl1I_cpu("cpu", Aidge::AddImpl_cpu<1>::create);
static Registrar<Add_Op<2>> registrarAddImpl2I_cpu("cpu", Aidge::AddImpl_cpu<2>::create);
static Registrar<Add_Op<3>> registrarAddImpl3I_cpu("cpu", Aidge::AddImpl_cpu<3>::create);
} // namespace
} // namespace Aidge
#endif /* __AIDGE_CPU_OPERATOR_ADDIMPL_H__ */