Forked from
Eclipse Projects / aidge / aidge_core
2045 commits behind the upstream repository.
-
Maxence Naud authoredMaxence Naud authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
ConvDepthWise.hpp 9.98 KiB
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_
#define AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_
#include <array>
#include <cmath>
#include <numeric>
#include <vector>
#include "aidge/data/Tensor.hpp"
#include "aidge/graph/Node.hpp"
#include "aidge/operator/OperatorTensor.hpp"
#include "aidge/operator/Producer.hpp"
#include "aidge/utils/StaticAttributes.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
namespace Aidge {
enum class ConvDepthWiseAttr { StrideDims, DilationDims, Channels, KernelDims };
template <DimIdx_t DIM>
class ConvDepthWise_Op : public OperatorTensor,
public Registrable<ConvDepthWise_Op<DIM>, std::string, std::unique_ptr<OperatorImpl>(const ConvDepthWise_Op<DIM> &)>,
public StaticAttributes<ConvDepthWiseAttr,
std::array<DimSize_t, DIM>,
std::array<DimSize_t, DIM>,
DimSize_t,
std::array<DimSize_t, DIM>> {
public:
static const std::string Type;
ConvDepthWise_Op() = delete;
using Attributes_ = StaticAttributes<ConvDepthWiseAttr,
std::array<DimSize_t, DIM>,
std::array<DimSize_t, DIM>,
DimSize_t,
std::array<DimSize_t, DIM>>;
template <ConvDepthWiseAttr e>
using attr = typename Attributes_::template attr<e>;
constexpr ConvDepthWise_Op(const DimSize_t nbChannels,
const std::array<DimSize_t, DIM> &kernel_dims,
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, DIM> &dilation_dims = create_array<DimSize_t,DIM>(1))
: OperatorTensor(Type, 1, 2, 1),
Attributes_(attr<ConvDepthWiseAttr::StrideDims>(stride_dims),
attr<ConvDepthWiseAttr::DilationDims>(dilation_dims),
attr<ConvDepthWiseAttr::Channels>(nbChannels),
attr<ConvDepthWiseAttr::KernelDims>(kernel_dims)) {}
/**
* @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated).
* @param op Operator to copy.
*/
ConvDepthWise_Op(const ConvDepthWise_Op<DIM>& op)
: OperatorTensor(op),
Attributes_(op)
{
mImpl = op.mImpl ? Registrar<ConvDepthWise_Op<DIM>>::create(mOutputs[0]->getImpl()->backend())(*this) : nullptr;
}
/**
* @brief Clone the operator using its copy-constructor.
* @see Operator::ConvDepthWise_Op
*/
std::shared_ptr<Operator> clone() const override {
return std::make_shared<ConvDepthWise_Op<DIM>>(*this);
}
void computeOutputDims() override final {
// check inputs have been associated
// TODO : add a check of inputs dimensions ?
bool associated = true;
for (IOIndex_t i = 0; i < 3; ++i) {
if (!getInput(i)) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "Every input should be associated with a Tensor");
}
associated &= !(getInput(i)->empty());
}
if (associated) {
std::array<DimSize_t, DIM + 2> outputDims = {};
const std::array<DimSize_t, DIM + 2> inputDims(getInput(0)->template dims<DIM+2>());
for (std::size_t dim = 0; dim < this->template getAttr<ConvDepthWiseAttr::KernelDims>().size() ; ++dim) {
const DimSize_t kernelExtent = this->template getAttr<ConvDepthWiseAttr::DilationDims>()[dim] *
(this->template getAttr<ConvDepthWiseAttr::KernelDims>()[dim] - 1) +
1;
outputDims[dim+2] = 1 + static_cast<DimSize_t>(
floor(static_cast<float>(inputDims[dim+2] - kernelExtent) /
static_cast<float>(this->template getAttr<ConvDepthWiseAttr::StrideDims>()[dim])));
}
// std::array<DimSize_t, DIM+2> weightDims = append(mInputs[0]->dims()[1],append(1, this->template getAttr<ConvDepthWiseAttr::KernelDims>()));
// if (mInputs[1]->empty()) {
// mInputs[1]->resize(weightDims);
// }
// if (mInputs[2]->empty()) {
// mInputs[2]->resize({mInputs[0]->dims()[1]});
// }
outputDims[1] = inputDims[1];
outputDims[0] = inputDims[0];
mOutputs[0]->resize(outputDims);
}
}
// std::vector<std::pair<std::size_t, std::vector<DimSize_t>>> computeReceptiveField(const std::size_t firstIdx, const std::vector<DimSize_t>& outputDims, const IOIndex_t outputIdx = 0) const override {
// if (outputIdx != 0) {
// AIDGE_THROW_OR_ABORT(std::runtime_error, "Conv_Op Operator has got only one output Tensor.");
// }
// if ((outputDims.size() == (DIM+2)) && outputDimsForwarded()) {
// // Offset
// const auto outputIdxDims = mOutput->getCoord(firstIdx);
// auto inputIdxDims = outputIdxDims; // batch idx is the same
// for (DimIdx_t i = 0; i < (DIM+2); ++i) {
// if (((outputDims[i] + outputIdxDims[i]) > mOutput->template dims<DIM+2>()[i]) || (outputDims[i] == 0)) {
// AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range for dimension %lu (%lu + %lu)", static_cast<std::size_t>(i), outputIdxDims[i], outputDims[i]);
// }
// }
// // padding is not a parameter of Conv_Op. It is handled in Pad_Op Operator
// // Width
// std::vector<DimSize_t> inputDims;
// inputDims.push_back(outputDims[0]); // same batch value
// inputDims.push_back(outputDims[1]); // same channel value
// for (DimIdx_t i = 0; i < DIM; ++i) {
// inputDims.push_back((outputDims[2+static_cast<std::size_t>(i)] - 1)
// * this->template getAttr<ConvDepthWiseAttr::StrideDims>()[static_cast<std::size_t>(i)]
// + 1
// + (this->template getAttr<ConvDepthWiseAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1)
// * this->template getAttr<ConvDepthWiseAttr::DilationDims>()[static_cast<std::size_t>(i)]);
// inputIdxDims[2+i] *= this->template getAttr<ConvDepthWiseAttr::StrideDims>()[static_cast<std::size_t>(i)];
// }
// std::vector<std::pair<std::size_t, std::vector<DimSize_t>>> res = std::vector<std::pair<std::size_t, std::vector<DimSize_t>>>();
// res.push_back(std::pair<std::size_t, std::vector<DimSize_t>>(mInputs[0]->getIdx(inputIdxDims), inputDims));
// return res;
// }
// AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet.");
// }
void setBackend(const std::string &name) override {
mImpl = Registrar<ConvDepthWise_Op<DIM>>::create(name)(*this);
mOutputs[0]->setBackend(name);
// FIXME: temporary workaround
getInput(1)->setBackend(name);
getInput(2)->setBackend(name);
}
static const std::vector<std::string> getInputsName(){
return {"data_input", "weight", "bias"};
}
static const std::vector<std::string> getOutputsName(){
return {"data_output"};
}
};
template <DimIdx_t DIM>
const std::string ConvDepthWise_Op<DIM>::Type = "ConvDepthWise";
template <std::array<DimSize_t, 1>::size_type DIM>
inline std::shared_ptr<Node> ConvDepthWise(const DimSize_t nbChannels,
const std::array<DimSize_t, DIM> &kernelDims,
const std::string& name = "",
const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) {
// FIXME: properly handle default w&b initialization in every cases
static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported");
auto convDW = std::make_shared<Node>(std::make_shared<ConvDepthWise_Op<static_cast<DimIdx_t>(DIM)>>(nbChannels, kernelDims, strideDims, dilationDims), name);
addProducer(convDW, 1, append(nbChannels, append(DimSize_t(1), kernelDims)), "w");
addProducer(convDW, 2, std::array<DimSize_t, 1>({nbChannels}), "b");
return convDW;
}
// helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction
template <DimSize_t DIM>
inline std::shared_ptr<Node> ConvDepthWise(
const DimSize_t nbChannels,
DimSize_t const (&kernelDims)[DIM],
const std::string& name = "",
const std::array<DimSize_t, DIM> &strideDims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, DIM> &dilationDims = create_array<DimSize_t,DIM>(1)) {
static_assert(DIM<=MaxDim,"Too many kernel dimensions required by ConvDepthWise, not supported");
return ConvDepthWise(nbChannels, to_array(kernelDims), name, strideDims, dilationDims);
}
} // namespace Aidge
namespace {
template <>
const char *const EnumStrings<Aidge::ConvDepthWiseAttr>::data[] = {"StrideDims", "DilationDims", "Channels",
"KernelDims"};
}
#endif /* AIDGE_CORE_OPERATOR_CONVDEPTHWISE_H_ */