Forked from
Eclipse Projects / aidge / aidge_core
2292 commits behind the upstream repository.
-
Maxence Naud authoredMaxence Naud authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
MatMul.hpp 5.88 KiB
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CORE_OPERATOR_MATMUL_H_
#define AIDGE_CORE_OPERATOR_MATMUL_H_
#include <array>
#include <cmath>
#include <numeric>
#include <memory>
#include <vector>
#include "aidge/utils/Types.h"
#include "aidge/data/Tensor.hpp"
#include "aidge/graph/Node.hpp"
#include "aidge/operator/Operator.hpp"
#include "aidge/operator/Producer.hpp"
#include "aidge/utils/StaticAttributes.hpp"
#include "aidge/utils/Registrar.hpp"
namespace Aidge {
enum class MatMulAttr { OutChannels };
class MatMul_Op : public Operator,
public Registrable<MatMul_Op,
std::string,
std::unique_ptr<OperatorImpl>(const MatMul_Op &)>,
public StaticAttributes<MatMulAttr, DimSize_t> {
public:
std::array<std::shared_ptr<Tensor>, 2> mInputs = {std::make_shared<Tensor>(), std::make_shared<Tensor>()};
const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>();
public:
static constexpr const char* Type = "MatMul";
MatMul_Op() = delete;
using Attributes_ = StaticAttributes<MatMulAttr, DimSize_t>;
template <MatMulAttr e> using attr = typename Attributes_::template attr<e>;
MatMul_Op(DimSize_t out_channels)
: Operator(Type),
Attributes_(
attr<MatMulAttr::OutChannels>(out_channels))
{
setDatatype(DataType::Float32);
}
/**
* @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated).
* @param op Operator to copy.
*/
MatMul_Op(const MatMul_Op& op)
: Operator(Type),
Attributes_(op),
mOutput(std::make_shared<Tensor>(*op.mOutput))
{
// cpy-ctor
setDatatype(op.mOutput->dataType());
mImpl = op.mImpl ? Registrar<MatMul_Op>::create(mOutput->getImpl()->backend())(*this) : nullptr;
}
/**
* @brief Clone the operator using its copy-constructor.
* @see Operator::MatMul_Op
*/
std::shared_ptr<Operator> clone() const override {
return std::make_shared<MatMul_Op>(*this);
}
void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final {
assert(inputIdx < 2 && "operators supports only 2 inputs");
assert(strcmp(data->type(), Tensor::Type)==0 && "input data must be of Tensor type");
mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data);
}
void computeOutputDims() override final {
if (!mInputs[0]->empty()) {
// <in_features**, out_channels>
std::array<DimSize_t, 2> weightDims = {this->template getAttr<MatMulAttr::OutChannels>(), static_cast<DimSize_t>(mInputs[0]->sizeM1())};
// <out_channels, batch>
std::array<DimSize_t, 2> outputDims = {mInputs[0]->dims()[0], this->template getAttr<MatMulAttr::OutChannels>()};
mInputs[1]->resize(weightDims);
mOutput->resize(outputDims);
}
}
bool outputDimsForwarded() const override final {
return !(mOutput->empty());
}
inline Tensor& input(const IOIndex_t inputIdx) const override final {
assert(inputIdx < 2 && "operators supports only 2 inputs");
return *(mInputs[inputIdx].get()); }
inline Tensor& output(const IOIndex_t /*outputIdx*/) const override final { return *(mOutput.get()); }
inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final {
assert(inputIdx < 2 && "MatMul Operators has 2 inputs");
return mInputs[inputIdx];
}
inline std::shared_ptr<Tensor> getOutput(const IOIndex_t outputIdx) const override final {
assert((outputIdx == 0) && "MatMul Operators has 1 output");
(void) outputIdx; // avoid unused warning
return mOutput;
}
std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final {
assert(inputIdx < 2 && "operators supports only 2 inputs");
return std::static_pointer_cast<Data>(mInputs[inputIdx]);
}
std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const override final {
assert(outputIdx == 0 && "operator supports only 1 output");
(void) outputIdx; // avoid unused warning
return std::static_pointer_cast<Data>(mOutput);
}
void setBackend(const std::string& name) {
mImpl = Registrar<MatMul_Op>::create(name)(*this);
mOutput->setBackend(name);
// FIXME: temporary workaround
mInputs[0]->setBackend(name);
mInputs[1]->setBackend(name);
}
void setDatatype(const DataType& datatype) {
mOutput->setDatatype(datatype);
// FIXME: temporary workaround
mInputs[0]->setDatatype(datatype);
mInputs[1]->setDatatype(datatype);
}
inline IOIndex_t nbInputs() const noexcept override final { return 2; }
inline IOIndex_t nbDataInputs() const noexcept override final { return 1; }
inline IOIndex_t nbOutputs() const noexcept override final { return 1; }
};
inline std::shared_ptr<Node> MatMul(DimSize_t out_channels, const std::string& name = "") {
// FIXME: properly handle default w initialization in every cases
auto matmul = std::make_shared<Node>(std::make_shared<MatMul_Op>(out_channels), name);
addProducer(matmul, 1, std::array<DimSize_t, 2>({out_channels, 1}), "w");
return matmul;
}
} // namespace Aidge
namespace {
template <>
const char *const EnumStrings<Aidge::MatMulAttr>::data[] = {"OutChannels"};
}
#endif /* AIDGE_CORE_OPERATOR__MATMUL_H_ */