/******************************************************************************** * Copyright (c) 2023 CEA-List * * This program and the accompanying materials are made available under the * terms of the Eclipse Public License 2.0 which is available at * http://www.eclipse.org/legal/epl-2.0. * * SPDX-License-Identifier: EPL-2.0 * ********************************************************************************/ #ifndef AIDGE_CORE_OPERATOR_MATMUL_H_ #define AIDGE_CORE_OPERATOR_MATMUL_H_ #include <array> #include <cmath> #include <numeric> #include <memory> #include <vector> #include "aidge/utils/Types.h" #include "aidge/data/Tensor.hpp" #include "aidge/graph/Node.hpp" #include "aidge/operator/Operator.hpp" #include "aidge/operator/Producer.hpp" #include "aidge/utils/StaticAttributes.hpp" #include "aidge/utils/Registrar.hpp" namespace Aidge { enum class MatMulAttr { OutChannels }; class MatMul_Op : public Operator, public Registrable<MatMul_Op, std::string, std::unique_ptr<OperatorImpl>(const MatMul_Op &)>, public StaticAttributes<MatMulAttr, DimSize_t> { public: std::array<std::shared_ptr<Tensor>, 2> mInputs = {std::make_shared<Tensor>(), std::make_shared<Tensor>()}; const std::shared_ptr<Tensor> mOutput = std::make_shared<Tensor>(); public: static constexpr const char* Type = "MatMul"; MatMul_Op() = delete; using Attributes_ = StaticAttributes<MatMulAttr, DimSize_t>; template <MatMulAttr e> using attr = typename Attributes_::template attr<e>; MatMul_Op(DimSize_t out_channels) : Operator(Type), Attributes_( attr<MatMulAttr::OutChannels>(out_channels)) { setDatatype(DataType::Float32); } /** * @brief Copy-constructor. Copy the operator attributes and its output tensor(s), but not its input tensors (the new operator has no input associated). * @param op Operator to copy. */ MatMul_Op(const MatMul_Op& op) : Operator(Type), Attributes_(op), mOutput(std::make_shared<Tensor>(*op.mOutput)) { // cpy-ctor setDatatype(op.mOutput->dataType()); mImpl = op.mImpl ? Registrar<MatMul_Op>::create(mOutput->getImpl()->backend())(*this) : nullptr; } /** * @brief Clone the operator using its copy-constructor. * @see Operator::MatMul_Op */ std::shared_ptr<Operator> clone() const override { return std::make_shared<MatMul_Op>(*this); } void associateInput(const IOIndex_t inputIdx, std::shared_ptr<Data> data) override final { assert(inputIdx < 2 && "operators supports only 2 inputs"); assert(strcmp(data->type(), Tensor::Type)==0 && "input data must be of Tensor type"); mInputs[inputIdx] = std::dynamic_pointer_cast<Tensor>(data); } void computeOutputDims() override final { if (!mInputs[0]->empty()) { // <in_features**, out_channels> std::array<DimSize_t, 2> weightDims = {this->template getAttr<MatMulAttr::OutChannels>(), static_cast<DimSize_t>(mInputs[0]->sizeM1())}; // <out_channels, batch> std::array<DimSize_t, 2> outputDims = {mInputs[0]->dims()[0], this->template getAttr<MatMulAttr::OutChannels>()}; mInputs[1]->resize(weightDims); mOutput->resize(outputDims); } } bool outputDimsForwarded() const override final { return !(mOutput->empty()); } inline Tensor& input(const IOIndex_t inputIdx) const override final { assert(inputIdx < 2 && "operators supports only 2 inputs"); return *(mInputs[inputIdx].get()); } inline Tensor& output(const IOIndex_t /*outputIdx*/) const override final { return *(mOutput.get()); } inline std::shared_ptr<Tensor> getInput(const IOIndex_t inputIdx) const override final { assert(inputIdx < 2 && "MatMul Operators has 2 inputs"); return mInputs[inputIdx]; } inline std::shared_ptr<Tensor> getOutput(const IOIndex_t outputIdx) const override final { assert((outputIdx == 0) && "MatMul Operators has 1 output"); (void) outputIdx; // avoid unused warning return mOutput; } std::shared_ptr<Data> getRawInput(const IOIndex_t inputIdx) const override final { assert(inputIdx < 2 && "operators supports only 2 inputs"); return std::static_pointer_cast<Data>(mInputs[inputIdx]); } std::shared_ptr<Data> getRawOutput(const IOIndex_t outputIdx) const override final { assert(outputIdx == 0 && "operator supports only 1 output"); (void) outputIdx; // avoid unused warning return std::static_pointer_cast<Data>(mOutput); } void setBackend(const std::string& name) { mImpl = Registrar<MatMul_Op>::create(name)(*this); mOutput->setBackend(name); // FIXME: temporary workaround mInputs[0]->setBackend(name); mInputs[1]->setBackend(name); } void setDatatype(const DataType& datatype) { mOutput->setDatatype(datatype); // FIXME: temporary workaround mInputs[0]->setDatatype(datatype); mInputs[1]->setDatatype(datatype); } inline IOIndex_t nbInputs() const noexcept override final { return 2; } inline IOIndex_t nbDataInputs() const noexcept override final { return 1; } inline IOIndex_t nbOutputs() const noexcept override final { return 1; } }; inline std::shared_ptr<Node> MatMul(DimSize_t out_channels, const std::string& name = "") { // FIXME: properly handle default w initialization in every cases auto matmul = std::make_shared<Node>(std::make_shared<MatMul_Op>(out_channels), name); addProducer(matmul, 1, std::array<DimSize_t, 2>({out_channels, 1}), "w"); return matmul; } } // namespace Aidge namespace { template <> const char *const EnumStrings<Aidge::MatMulAttr>::data[] = {"OutChannels"}; } #endif /* AIDGE_CORE_OPERATOR__MATMUL_H_ */