Skip to content
Snippets Groups Projects
Commit d7c91a38 authored by Cyril Moineau's avatar Cyril Moineau
Browse files

Remove unused functions.

parent db126426
No related branches found
No related tags found
No related merge requests found
......@@ -78,9 +78,6 @@ class Producer_ARMCortexM(ExportNode):
# A Producer does nothing during forward
return []
@classmethod
def exportable(cls, node):
return True # TODO add check i/o NCHW
class Scaling():
class ScalingMode:
......@@ -272,9 +269,7 @@ class Pooling_ARMCortexM(ExportNodeCpp):
]
self.kernel = node.get_operator().attr.kernel_dims
self.stride = node.get_operator().attr.stride_dims
@classmethod
def exportable(cls, node):
return True # TODO add check i/o NCHW
@ExportLibAidgeARM.register("FC", aidge_core.ImplSpec(aidge_core.IOSpec(aidge_core.dtype.float32)))
class FC_ARMCortexM(ExportNodeCpp):
......@@ -292,9 +287,6 @@ class FC_ARMCortexM(ExportNodeCpp):
self.kernels_to_copy = [
str(ROOT / "_Aidge_Arm" / "kernels" / "FullyConnected" / "Fc.hpp")
]
@classmethod
def exportable(cls, node):
return True # TODO add check i/o NCHW
@ExportLibAidgeARM.register("MaxPooling2D", aidge_core.ImplSpec(aidge_core.IOSpec(aidge_core.dtype.float32)))
class MaxPooling_ARMCortexM(Pooling_ARMCortexM):
......@@ -431,247 +423,3 @@ class MatMul_ARMCortexM(ExportNodeCpp):
self.kernels_to_copy = [
str(ROOT / "_Aidge_Arm" / "kernels" / "Matmul" / "aidge_matmul_chw_float32.h"),
]
# TODO: Is this used ?
# @register("ConvReluScaling")
# class ConvReluScaling_ARMCortexM(Conv_ARMCortexM):
# def __init__(self, node, board, library):
# super(Conv_ARMCortexM, self).__init__(node, board, library)
# if self.operator.has_attr("Begin_End_Borders"):
# self.padding = self.operator.attr.begin_end_borders
# self.activation = "Rectifier"
# # Should do this line but there is a bug while changing the dtype of generic operator...
# # self.dtype = aidge2c(node.get_operator().get_output(0).dtype())
# # Do this instead
# if self.operator.attr.quantized_nb_bits == 8:
# if self.operator.attr.is_output_unsigned:
# self.dtype = aidge2c(aidge_core.dtype.uint8)
# else:
# self.dtype = aidge2c(aidge_core.dtype.int8)
# # Impose Single Shift (perhaps change it to have a more modular system)
# self.scaling = Scaling(self.operator.attr.scaling_factor,
# self.operator.attr.quantized_nb_bits)("floating_point")
# @register("BatchNorm")
# class BatchNorm2D_ARMCortexM(ExportNode):
# def __init__(self, node, board, library):
# super().__init__(node)
# self.board = board
# self.library = library
# self.dataformat = aidge_datatype2dataformat(node.get_operator().get_output(0).dtype())
# self.dtype = aidge_datatype2ctype(node.get_operator().get_output(0).dtype())
# self.epsilon = node.get_operator().attr.epsilon
# self.producers = []
# for i in range(0, len(node.inputs())):
# if node.input(i)[0].type()=="Producer":
# producer = node.input(i)[0]
# self.producers.append(Producer_ARMCortexM(producer))
# def export(self, export_folder:Path,list_configs:list):
# for i in range(len(self.producers)):
# self.producers[i].export(export_folder / "parameters" / f"{self.producers[i].name}.h")
# list_configs.append(f"parameters/{self.producers[i].name}.h")
# list_configs.append(f"layers/{self.name}.h")
# if self.library == "aidge":
# if self.dataformat == "float32":
# copyfile(str(ROOT / "_Aidge_Arm" / "kernels" / "BatchNorm" / "aidge_batchnorm2d_chw_float32.c"),
# str(export_folder / "src" / "kernels"))
# generate_file(
# str(export_folder / "layers" / f"{self.name}.h"),
# str(ROOT / "_Aidge_Arm" / "templates" / "configuration" / "batchnorm2d.jinja"),
# name=self.name,
# epsilon=self.epsilon,
# input_dims = self.inputs_dims[0])
# return list_configs
# def forward(self, list_actions:list):
# if not self.is_last:
# list_actions.append(set_up_output(self.name, self.dtype))
# if self.library == "aidge":
# list_actions.append(generate_str(
# str(ROOT / "_Aidge_Arm" / "templates" / "forward_call" / "batchnorm2d.jinja"),
# name=self.name,
# dataformat=self.dataformat,
# input_name=self.inputs[0].name(),
# running_mean_name=self.inputs[3].name(),
# running_var_name=self.inputs[4].name(),
# weight_name=self.inputs[1].name(),
# bias_name=self.inputs[2].name(),
# output_name=self.name
# ))
# return list_actions
# @register("Reshape")
# class Reshape_ARMCortexM(ExportNode):
# def __init__(self, node, board, library):
# super().__init__(node)
# self.board = board
# self.library = library
# # node.set_name(self.inputs[0].name())
# self.dataformat = aidge_datatype2dataformat(node.get_operator().get_output(0).dtype())
# self.dtype = aidge_datatype2ctype(node.get_operator().get_output(0).dtype())
# def export(self, export_folder:Path, list_configs:list):
# list_configs.append(f"layers/{self.name}.h")
# if self.library == "aidge":
# if self.dataformat == "float32":
# copyfile(str(ROOT / "_Aidge_Arm" / "kernels" / "Reshape" / "aidge_reshape_chw_float32.c"),
# str(export_folder / "src" / "kernels"))
# generate_file(
# str(export_folder / "layers" / f"{self.name}.h"),
# str(ROOT / "_Aidge_Arm" / "templates" / "configuration" / "reshape.jinja"),
# name=self.name,
# nb_inputs=np.prod(self.inputs_dims[0]),
# nb_outputs=np.prod(self.outputs_dims[0]))
# return list_configs
# def forward(self, list_actions:list):
# if not self.is_last:
# list_actions.append(set_up_output(self.name, self.dtype))
# if self.library == "aidge":
# list_actions.append(generate_str(
# str(ROOT / "_Aidge_Arm" / "templates" / "forward_call" / "reshape.jinja"),
# name=self.name,
# dataformat=self.dataformat,
# input_name=self.inputs[0].name(),
# output_name=self.name,
# ))
# return list_actions
# @register("Gather")
# class Gather_ARMCortexM(ExportNode):
# def __init__(self, node, board, library):
# super().__init__(node)
# self.board = board
# self.library = library
# self.dataformat = aidge_datatype2dataformat(node.get_operator().get_output(0).dtype())
# self.dtype = aidge_datatype2ctype(node.get_operator().get_output(0).dtype())
# self.indices = node.get_operator().attr.indices
# self.axis = node.get_operator().attr.axis
# def export(self, export_folder:Path, list_configs:list):
# list_configs.append(f"layers/{self.name}.h")
# export_params(f"{self.inputs[0].name()}_DIMS", np.array(self.inputs_dims[0],dtype=np.int32),export_folder / "dimensions" / f"{self.inputs[0].name()}_DIMS.h")
# list_configs.append(f"dimensions/{self.inputs[0].name()}_DIMS.h")
# export_params(f"{self.name}_INDEXES", np.array(self.indices,dtype=np.int32),export_folder / "dimensions" / f"{self.name}_INDEXES.h")
# list_configs.append(f"dimensions/{self.name}_INDEXES.h")
# if self.library == "aidge":
# if self.dataformat == "float32":
# copyfile(str(ROOT / "_Aidge_Arm" / "kernels" / "Transform" / "Gather" / "aidge_gather_chw_float32.c"),
# str(export_folder / "src" / "kernels"))
# generate_file(
# str(export_folder / "layers" / f"{self.name}.h"),
# str(ROOT / "_Aidge_Arm" / "templates" / "configuration" / "gather.jinja"),
# name=self.name,
# axis = self.axis,
# indices = self.indices,
# input_dims=self.inputs_dims[0],
# nb_outputs=np.prod(self.outputs_dims[0])
# )
# return list_configs
# def forward(self, list_actions:list):
# if not self.is_last:
# list_actions.append(set_up_output(self.name, self.dtype))
# if self.library == "aidge":
# list_actions.append(generate_str(
# str(ROOT / "_Aidge_Arm" / "templates" / "forward_call" / "gather.jinja"),
# name=self.name,
# dataformat=self.dataformat,
# input_name=self.inputs[0].name(),
# output_name=self.name
# ))
# return list_actions
# @register("Transpose")
# class Transpose_ARMCortexM(ExportNode):
# def __init__(self, node, board, library):
# super().__init__(node)
# self.board = board
# self.library = library
# self.dataformat = aidge_datatype2dataformat(node.get_operator().get_output(0).dtype())
# self.dtype = aidge_datatype2ctype(node.get_operator().get_output(0).dtype())
# self.perm = node.get_operator().attr.output_dims_order
# def export(self, export_folder:Path, list_configs:list):
# list_configs.append(f"layers/{self.name}.h")
# export_params(f"{self.inputs[0].name()}_DIMS", np.array(self.inputs_dims[0],dtype=np.int32),export_folder / "dimensions" / f"{self.inputs[0].name()}_DIMS.h")
# list_configs.append(f"dimensions/{self.inputs[0].name()}_DIMS.h")
# export_params(f"{self.name}_PERMUTATIONS", np.array(self.perm,dtype=np.int32),export_folder / "dimensions" / f"{self.name}_PERMUTATIONS.h")
# list_configs.append(f"dimensions/{self.name}_PERMUTATIONS.h")
# export_params(f"{self.name}_DIMS", np.array(self.outputs_dims[0],dtype=np.int32),export_folder / "dimensions" / f"{self.name}_DIMS.h")
# list_configs.append(f"dimensions/{self.name}_DIMS.h")
# if self.library == "aidge":
# if self.dataformat == "float32":
# copyfile(str(ROOT / "_Aidge_Arm" / "kernels" / "Transform" / "Transpose" / "aidge_transpose_chw_float32.c"),
# str(export_folder / "src" / "kernels"))
# generate_file(
# str(export_folder / "layers" / f"{self.name}.h"),
# str(ROOT / "_Aidge_Arm" / "templates" / "configuration" / "transpose.jinja"),
# name=self.name,
# perm = self.perm,
# input_dims=self.inputs_dims[0],
# output_dims=self.outputs_dims[0],
# nb_outputs=np.prod(self.outputs_dims[0])
# )
# # print(self.outputs_dims)
# return list_configs
# def forward(self, list_actions:list):
# if not self.is_last:
# list_actions.append(set_up_output(self.name, self.dtype))
# if self.library == "aidge":
# list_actions.append(generate_str(
# str(ROOT / "_Aidge_Arm" / "templates" / "forward_call" / "transpose.jinja"),
# name=self.name,
# dataformat=self.dataformat,
# input_name=self.inputs[0].name(),
# output_name=self.name
# ))
# return list_actions
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment