Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
aidge_export_arm_cortexm
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Vincent Baudelet
aidge_export_arm_cortexm
Commits
6acae3ed
Commit
6acae3ed
authored
5 months ago
by
Thibault Allenet
Browse files
Options
Downloads
Patches
Plain Diff
Add ExportNodeCpp classes registry for lowbit implementations
parent
9cb10213
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
aidge_export_arm_cortexm/operators.py
+258
-7
258 additions, 7 deletions
aidge_export_arm_cortexm/operators.py
with
258 additions
and
7 deletions
aidge_export_arm_cortexm/operators.py
+
258
−
7
View file @
6acae3ed
...
...
@@ -5,12 +5,15 @@ from pathlib import Path
from
typing
import
Tuple
,
List
import
aidge_core
import
aidge_backend_cpu
from
aidge_core.export_utils
import
ExportNode
,
ExportNodeCpp
from
aidge_core.export_utils.code_generation
import
*
from
aidge_export_arm_cortexm.utils
import
ROOT
from
aidge_export_arm_cortexm.utils.converter
import
numpy_dtype2ctype
from
aidge_export_arm_cortexm.utils.generation
import
*
from
aidge_export_arm_cortexm.export_registry
import
ExportLibAidgeARM
# from data_conversion import datatype_converter_aidge2arm
from
aidge_export_arm_cortexm.data_conversion
import
datatype_converter_aidge2arm
##############################################
############## Export functions ##############
...
...
@@ -18,6 +21,7 @@ from aidge_export_arm_cortexm.export_registry import ExportLibAidgeARM
def
export_params
(
name
:
str
,
array
:
np
.
ndarray
,
type_str
:
str
,
filepath
:
str
):
# Get directory name of the file
...
...
@@ -31,21 +35,66 @@ def export_params(name:str,
filepath
,
str
(
ROOT
/
"
templates
"
/
"
data
"
/
"
parameters.jinja
"
),
name
=
name
,
data_t
=
numpy_dtype2ctype
(
array
.
dtype
)
,
values
=
array
.
tolist
()
data_t
=
type_str
,
values
=
array
.
tolist
()
,
)
def
export_params_from_tensor
(
name
:
str
,
tensor
:
aidge_core
.
Tensor
,
type_str
:
str
,
filepath
:
str
):
# Get directory name of the file
dirname
=
os
.
path
.
dirname
(
filepath
)
# If directory doesn't exist, create it
if
not
os
.
path
.
exists
(
dirname
):
os
.
makedirs
(
dirname
)
array
=
np
.
array
(
tensor
).
reshape
(
-
1
)
generate_file
(
filepath
,
str
(
ROOT
/
"
templates
"
/
"
data
"
/
"
parameters.jinja
"
),
name
=
name
,
data_t
=
type_str
,
values
=
array
.
tolist
(),
)
##############################################
################### Actions ##################
##############################################
@ExportLibAidgeARM.register
(
"
Producer
"
,
aidge_core
.
ImplSpec
(
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
dual_int4
)))
class
Producer_ARMCortexM
(
ExportNode
):
def
__init__
(
self
,
node
,
mem_info
,
conversion_map
=
datatype_converter_aidge2arm
):
super
().
__init__
(
node
,
mem_info
,
conversion_map
)
weights
=
self
.
operator
.
get_output
(
0
)
self
.
values
=
np
.
array
(
weights
).
reshape
(
-
1
)
def
export
(
self
,
export_folder
:
Path
):
header_path
=
f
"
include/parameters/
{
self
.
attributes
[
'
name
'
]
}
.hpp
"
export_params
(
name
=
self
.
attributes
[
'
out_name
'
][
0
],
array
=
self
.
values
,
type_str
=
self
.
attributes
[
"
out_cdtype
"
][
0
],
filepath
=
str
(
export_folder
/
header_path
))
return
[
header_path
]
def
forward
(
self
):
# A Producer does nothing during forward
return
[]
@ExportLibAidgeARM.register
(
"
Producer
"
,
aidge_core
.
ImplSpec
(
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
any
)))
class
Producer_ARMCortexM
(
ExportNode
):
def
__init__
(
self
,
node
,
mem_info
):
super
().
__init__
(
node
,
mem_info
)
def
__init__
(
self
,
node
,
mem_info
,
conversion_map
=
datatype_converter_aidge2arm
):
super
().
__init__
(
node
,
mem_info
,
conversion_map
)
self
.
values
=
np
.
array
(
self
.
operator
.
get_output
(
0
))
if
len
(
self
.
values
.
shape
)
==
4
:
# Note: export in HWC
self
.
values
=
np
.
transpose
(
self
.
values
,
(
0
,
2
,
3
,
1
))
...
...
@@ -69,9 +118,10 @@ class Producer_ARMCortexM(ExportNode):
def
export
(
self
,
export_folder
:
Path
):
header_path
=
f
"
include/parameters/
{
self
.
attributes
[
'
name
'
]
}
.hpp
"
export_params
(
self
.
attributes
[
'
out_name
'
][
0
],
self
.
values
.
reshape
(
-
1
),
str
(
export_folder
/
header_path
))
name
=
self
.
attributes
[
'
out_name
'
][
0
],
array
=
self
.
values
.
reshape
(
-
1
),
type_str
=
self
.
attributes
[
"
out_cdtype
"
][
0
],
filepath
=
str
(
export_folder
/
header_path
))
return
[
header_path
]
def
forward
(
self
):
...
...
@@ -224,6 +274,207 @@ class Conv_ARMCortexM(ExportNodeCpp):
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Convolution
"
/
"
Conv.hpp
"
)
]
@ExportLibAidgeARM.register_generic
(
"
ArmPadConv2D
"
,
aidge_core
.
ImplSpec
([
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
any
),
# Input[0] : Input Spec
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
dual_int4
),
# Input[1] : Weight Spec
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
int32
)
# Input[2] : Bias Spec
],
[
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
any
)
# Output[0] : Output spec
]))
class
PadConvScaling_ARMCortexM
(
ExportNodeCpp
):
def
__init__
(
self
,
node
,
mem_info
,
conversion_map
=
datatype_converter_aidge2arm
):
super
().
__init__
(
node
,
mem_info
,
conversion_map
)
self
.
attributes
[
"
activation
"
]
=
"
Linear
"
self
.
attributes
[
"
padding
"
]
=
[
0
,
0
]
if
self
.
operator
.
attr
.
has_attr
(
"
Pad2D_0
"
):
self
.
attributes
[
"
padding
"
]
=
self
.
operator
.
attr
.
get_attr
(
"
Pad2D_0
"
).
get_attr
(
"
begin_end_borders
"
)
self
.
attributes
[
"
kernel_dims
"
]
=
self
.
operator
.
attr
.
get_attr
(
"
Conv2D_0
"
).
get_attr
(
"
kernel_dims
"
)
self
.
attributes
[
"
stride_dims
"
]
=
self
.
operator
.
attr
.
get_attr
(
"
Conv2D_0
"
).
get_attr
(
"
stride_dims
"
)
self
.
attributes
[
"
dilation_dims
"
]
=
self
.
operator
.
attr
.
get_attr
(
"
Conv2D_0
"
).
get_attr
(
"
dilation_dims
"
)
# Correct "in_chan" and "out_chan" that were taken from the compacted tensor
self
.
attributes
[
"
in_chan
"
][
0
]
=
self
.
attributes
[
"
in_channels
"
]
self
.
attributes
[
"
out_chan
"
][
0
]
=
self
.
attributes
[
"
out_channels
"
]
if
self
.
operator
.
attr
.
has_attr
(
"
ReLU_0
"
):
self
.
attributes
[
"
activation
"
]
=
"
Rectifier
"
# if self.operator.attr.has_attr("Scaling_0"):
if
self
.
operator
.
attr
.
has_attr
(
"
scaling_factor
"
):
scaling_factor
=
self
.
operator
.
attr
.
scaling_factor
self
.
attributes
.
update
(
Scaling
(
scaling_factor
=
scaling_factor
)(
"
floating_point
"
))
self
.
config_template
=
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
templates
"
/
"
configuration
"
/
"
conv_config.jinja
"
)
self
.
forward_template
=
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
templates
"
/
"
forward_call
"
/
"
custom_conv_kernel.jinja
"
)
self
.
include_list
=
[]
self
.
kernels_to_copy
=
[
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Convolution
"
/
"
CustomConv.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
aidge_supportfunctions.h
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
Macs.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
nn_scaling_functions.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
subkernels_functions.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
swar_arm_acle.h
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
typedefs.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
utils.hpp
"
)
]
@ExportLibAidgeARM.register_generic
(
"
ArmConv2D
"
,
aidge_core
.
ImplSpec
([
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
any
),
# Input[0] : Input Spec
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
dual_int4
),
# Input[1] : Weight Spec
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
int32
)
# Input[2] : Bias Spec
],
[
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
any
)
# Output[0] : Output spec
]))
class
ConvScaling_ARMCortexM
(
ExportNodeCpp
):
def
__init__
(
self
,
node
,
mem_info
,
conversion_map
=
datatype_converter_aidge2arm
):
super
().
__init__
(
node
,
mem_info
,
conversion_map
)
self
.
attributes
[
"
activation
"
]
=
"
Linear
"
self
.
attributes
[
"
padding
"
]
=
[
0
,
0
]
if
self
.
operator
.
attr
.
has_attr
(
"
Pad2D_0
"
):
self
.
attributes
[
"
padding
"
]
=
self
.
operator
.
attr
.
get_attr
(
"
Pad2D_0
"
).
get_attr
(
"
begin_end_borders
"
)
self
.
attributes
[
"
kernel_dims
"
]
=
self
.
operator
.
attr
.
get_attr
(
"
Conv2D_0
"
).
get_attr
(
"
kernel_dims
"
)
self
.
attributes
[
"
stride_dims
"
]
=
self
.
operator
.
attr
.
get_attr
(
"
Conv2D_0
"
).
get_attr
(
"
stride_dims
"
)
self
.
attributes
[
"
dilation_dims
"
]
=
self
.
operator
.
attr
.
get_attr
(
"
Conv2D_0
"
).
get_attr
(
"
dilation_dims
"
)
# Correct "in_chan" and "out_chan" that were taken from the compacted tensor
self
.
attributes
[
"
in_chan
"
][
0
]
=
self
.
attributes
[
"
in_channels
"
]
self
.
attributes
[
"
out_chan
"
][
0
]
=
self
.
attributes
[
"
out_channels
"
]
if
self
.
operator
.
attr
.
has_attr
(
"
ReLU_0
"
):
self
.
attributes
[
"
activation
"
]
=
"
Rectifier
"
if
self
.
operator
.
attr
.
has_attr
(
"
scaling_factor
"
):
scaling_factor
=
self
.
operator
.
attr
.
scaling_factor
self
.
attributes
.
update
(
Scaling
(
scaling_factor
=
scaling_factor
)(
"
floating_point
"
))
self
.
config_template
=
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
templates
"
/
"
configuration
"
/
"
conv_config.jinja
"
)
self
.
forward_template
=
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
templates
"
/
"
forward_call
"
/
"
custom_conv_kernel.jinja
"
)
self
.
include_list
=
[]
self
.
kernels_to_copy
=
[
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Convolution
"
/
"
CustomConv.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
aidge_supportfunctions.h
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
Macs.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
nn_scaling_functions.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
subkernels_functions.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
swar_arm_acle.h
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
typedefs.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
utils.hpp
"
)
]
@ExportLibAidgeARM.register_generic
(
"
ArmFC
"
,
aidge_core
.
ImplSpec
([
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
any
),
# Input[0] : Input Spec
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
dual_int4
),
# Input[1] : Weight Spec
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
int32
)
# Input[2] : Bias Spec
],
[
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
any
)
# Output[0] : Output spec
]))
class
FCScaling_ARMCortexM
(
ExportNodeCpp
):
def
__init__
(
self
,
node
,
mem_info
,
conversion_map
=
datatype_converter_aidge2arm
):
super
().
__init__
(
node
,
mem_info
,
conversion_map
)
self
.
attributes
[
"
activation
"
]
=
"
Linear
"
# # Correct "in_chan" and "out_chan" that were taken from the compacted tensor
self
.
attributes
[
"
in_chan
"
][
0
]
=
self
.
attributes
[
"
in_channels
"
]
self
.
attributes
[
"
out_chan
"
][
0
]
=
self
.
attributes
[
"
out_channels
"
]
if
self
.
operator
.
attr
.
has_attr
(
"
ReLU_0
"
):
self
.
attributes
[
"
activation
"
]
=
"
Rectifier
"
if
self
.
operator
.
attr
.
has_attr
(
"
scaling_factor
"
):
scaling_factor
=
self
.
operator
.
attr
.
scaling_factor
self
.
attributes
.
update
(
Scaling
(
scaling_factor
=
scaling_factor
)(
"
floating_point
"
))
self
.
config_template
=
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
templates
"
/
"
configuration
"
/
"
fc_config.jinja
"
)
self
.
forward_template
=
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
templates
"
/
"
forward_call
"
/
"
custom_fc_kernel.jinja
"
)
self
.
include_list
=
[]
self
.
kernels_to_copy
=
[
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
FullyConnected
"
/
"
CustomFc.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
aidge_supportfunctions.h
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
Macs.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
nn_scaling_functions.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
subkernels_functions.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
swar_arm_acle.h
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
typedefs.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
utils.hpp
"
)
]
@ExportLibAidgeARM.register
(
"
MaxPooling2D
"
,
aidge_core
.
ImplSpec
(
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
any
)))
class
CustomPooling_ARMCortexM
(
ExportNodeCpp
):
def
__init__
(
self
,
node
,
mem_info
,
conversion_map
=
datatype_converter_aidge2arm
):
super
().
__init__
(
node
,
mem_info
,
conversion_map
)
self
.
attributes
[
"
activation
"
]
=
"
Linear
"
self
.
attributes
[
"
pool_type
"
]
=
"
Max
"
# No padding with MaxPooling or AvgPooling
# Use PaddedMaxPooling/PaddedAvgPooling to add padding attribute
self
.
attributes
[
"
padding
"
]
=
[
0
,
0
]
self
.
attributes
[
"
kernel_dims
"
]
=
node
.
get_operator
().
attr
.
kernel_dims
self
.
attributes
[
"
stride_dims
"
]
=
node
.
get_operator
().
attr
.
stride_dims
self
.
config_template
=
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
templates
"
/
"
configuration
"
/
"
pool_config.jinja
"
)
self
.
forward_template
=
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
templates
"
/
"
forward_call
"
/
"
custom_pool_kernel.jinja
"
)
self
.
include_list
=
[]
self
.
kernels_to_copy
=
[
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Pooling
"
/
"
CustomPooling.hpp
"
)
]
self
.
kernels_to_copy
=
[
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Pooling
"
/
"
CustomPooling.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
aidge_supportfunctions.h
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
Macs.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
subkernels_functions.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
typedefs.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
utils.hpp
"
)
]
# USING IMPLSPEC CONSTRUCTOR : INPUTS : const std::vector<ImplSpec::IOSpec>&, OUTPUTS : const std::vector<ImplSpec::IOSpec>&, ATTRIBUTES : const DynamicAttributes&>()
@ExportLibAidgeARM.register
(
"
Conv2D
"
,
aidge_core
.
ImplSpec
(
[
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
any
),
# Input[0] : Input Spec
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
int4
),
# Input[1] : Weight Spec
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
any
)
# Input[2] : Bias Spec
],
[
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
int4
)
# Output[0] : Output spec
]))
class
Conv_ARMCortexM
(
ExportNodeCpp
):
def
__init__
(
self
,
node
,
mem_info
,
conversion_map
=
datatype_converter_aidge2arm
):
super
().
__init__
(
node
,
mem_info
,
conversion_map
)
self
.
attributes
[
"
activation
"
]
=
"
Linear
"
self
.
attributes
.
update
(
Scaling
()(
"
no_scaling
"
))
# No padding with Conv
# Use PaddedConv to add padding attribute
self
.
attributes
[
"
padding
"
]
=
[
0
,
0
]
self
.
config_template
=
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
templates
"
/
"
configuration
"
/
"
conv_config.jinja
"
)
self
.
forward_template
=
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
templates
"
/
"
forward_call
"
/
"
custom_conv_kernel.jinja
"
)
self
.
include_list
=
[]
self
.
kernels_to_copy
=
[
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Convolution
"
/
"
CustomConv.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
aidge_supportfunctions.h
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
Macs.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
nn_scaling_functions.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
subkernels_functions.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
swar_arm_acle.h
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
typedefs.hpp
"
),
str
(
ROOT
/
"
_Aidge_Arm
"
/
"
kernels
"
/
"
Utils
"
/
"
utils.hpp
"
)
]
@ExportLibAidgeARM.register
(
"
ConvDepthWise2D
"
,
aidge_core
.
ImplSpec
(
aidge_core
.
IOSpec
(
aidge_core
.
dtype
.
float32
)))
class
ConvDW_ARMCortexM
(
ExportNodeCpp
):
def
__init__
(
self
,
node
,
mem_info
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment