Forked from
Eclipse Projects / aidge / aidge_backend_cpu
410 commits behind the upstream repository.
-
Olivier BICHLER authoredOlivier BICHLER authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
FCImpl.cpp 5.19 KiB
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/backend/cpu/operator/FCImpl.hpp"
#include <cstddef> // std::size_t
#include <functional>
#include <memory>
#include <tuple>
#include "aidge/backend/cpu/data/GetCPUPtr.h"
#include "aidge/backend/cpu/operator/FCImpl_backward_kernels.hpp"
#include "aidge/backend/cpu/operator/FCImpl_forward_kernels.hpp"
#include "aidge/operator/FC.hpp"
#include "aidge/utils/ErrorHandling.hpp"
#include "aidge/utils/Types.h"
void Aidge::FCImpl_cpu::forward()
{
const FC_Op& op_ = dynamic_cast<const FC_Op&>(mOp);
AIDGE_ASSERT(op_.getInput(0), "missing input #0");
AIDGE_ASSERT(op_.getInput(1), "missing input #1");
// Find the correct kernel type
const auto outputDataType = op_.getOutput(0)->dataType();
const Registrar<FCImplForward_cpu>::registrar_key registrarKey = {
op_.getInput(0)->dataType(),
op_.getInput(1)->dataType(),
((op_.getInput(2)) ? op_.getInput(2)->dataType() : op_.getInput(1)->dataType()),
outputDataType};
Registrar<FCImplForward_cpu>::registrar_type kernelFunc;
if (Registrar<FCImplForward_cpu>::exists(registrarKey)) {
// One exists with the right inputs/output types
kernelFunc = Registrar<FCImplForward_cpu>::create(registrarKey);
}
else {
// Otherwise, fallback to the kernel with all types matching output type
kernelFunc = Registrar<FCImplForward_cpu>::create({
outputDataType, outputDataType, outputDataType, outputDataType});
}
// Convert input data (no overhead if not needed!)
// TODO: right now, if needed, memory will be allocated/deallocated at each
// call to forward(). We might put the following shared_ptr as members of
// this class to avoid that.
std::shared_ptr<Tensor> input0Fallback, input1Fallback, input2Fallback;
const auto& input0 = op_.getInput(0)->refCastFrom(input0Fallback, *(op_.getOutput(0)));
const auto& input1 = op_.getInput(1)->refCastFrom(input1Fallback, *(op_.getOutput(0)));
const auto& input2 = (op_.getInput(2)) ? op_.getInput(2)->refCastFrom(input2Fallback, *(op_.getOutput(0))) : Tensor();
// Call kernel
const auto batchSize = (input0.dims().size() > 1) ? input0.dims()[0] : 1;
kernelFunc(batchSize,
input1.dims()[1], // nb input features
input1.dims()[0], // nb output features
input0.getImpl()->rawPtr(),
input1.getImpl()->rawPtr(),
(op_.getInput(2)) ? input2.getImpl()->rawPtr() : nullptr,
getCPUPtr(mOp.getRawOutput(0)));
}
void Aidge::FCImpl_cpu::backward()
{
const FC_Op& op_ = dynamic_cast<const FC_Op&>(mOp);
const auto& fc_grad = op_.getOutput(0)->grad();
AIDGE_ASSERT(fc_grad, "missing ouput #0 gradient");
AIDGE_ASSERT(op_.getInput(0)->grad(), "missing input #0 gradient");
AIDGE_ASSERT(op_.getInput(1)->grad(), "missing input #1 gradient");
// Find the correct kernel type
const Registrar<FCImplBackward_cpu>::registrar_key registrarKey = {
fc_grad->dataType(),
op_.getInput(1)->grad()->dataType(),
(op_.getInput(2)) ? op_.getInput(2)->grad()->dataType() : op_.getInput(1)->grad()->dataType(),
op_.getInput(0)->grad()->dataType()};
Registrar<FCImplBackward_cpu>::registrar_type kernelFunc;
if (Registrar<FCImplBackward_cpu>::exists(registrarKey)) {
// One exists with the right inputs/output types
kernelFunc = Registrar<FCImplBackward_cpu>::create(registrarKey);
}
else {
// Otherwise, fallback to the kernel with all types matching output type
kernelFunc = Registrar<FCImplBackward_cpu>::create({
fc_grad->dataType(), fc_grad->dataType(), fc_grad->dataType(), fc_grad->dataType()});
}
// Convert input data (no overhead if not needed!)
// TODO: right now, if needed, memory will be allocated/deallocated at each
// call to forward(). We might put the following shared_ptr as members of
// this class to avoid that.
std::shared_ptr<Tensor> input0gradFallback, input1gradFallback, input2gradFallback;
const auto& input0grad = op_.getInput(0)->grad()->refCastFrom(input0gradFallback, *(op_.getOutput(0)));
const auto& input1grad = op_.getInput(1)->grad()->refCastFrom(input1gradFallback, *(op_.getOutput(0)));
const auto& input2grad = (op_.getInput(2)) ? op_.getInput(2)->grad()->refCastFrom(input2gradFallback, *(op_.getOutput(0))) : Tensor();
// Call kernel
const auto batchSize = (input0grad.dims().size() > 1) ? input0grad.dims()[0] : 1;
kernelFunc(batchSize,
input1grad.dims()[1], // nb input features
input1grad.dims()[0], // nb output features
getCPUPtr(fc_grad),
getCPUPtr(op_.getInput(0)),
getCPUPtr(mOp.getRawInput(1)),
input0grad.getImpl()->rawPtr(),
input1grad.getImpl()->rawPtr(),
(op_.getInput(2)) ? input2grad.getImpl()->rawPtr() : nullptr);
}