Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
aidge_backend_cpu_ll
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Lucas Lopez
aidge_backend_cpu_ll
Commits
10d79752
Commit
10d79752
authored
6 months ago
by
Maxence Naud
Browse files
Options
Downloads
Patches
Plain Diff
Resolve "Missing ``dilation`` parameter in Conv[DepthWise] forward kernel"
parent
c6edaf36
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
include/aidge/backend/cpu/operator/ConvDepthWiseImpl_kernels.hpp
+26
-16
26 additions, 16 deletions
.../aidge/backend/cpu/operator/ConvDepthWiseImpl_kernels.hpp
include/aidge/backend/cpu/operator/ConvImpl_kernels.hpp
+29
-19
29 additions, 19 deletions
include/aidge/backend/cpu/operator/ConvImpl_kernels.hpp
with
55 additions
and
35 deletions
include/aidge/backend/cpu/operator/ConvDepthWiseImpl_kernels.hpp
+
26
−
16
View file @
10d79752
...
@@ -38,7 +38,7 @@ namespace Aidge {
...
@@ -38,7 +38,7 @@ namespace Aidge {
*/
*/
template
<
class
I
,
class
W
,
class
B
,
class
O
>
template
<
class
I
,
class
W
,
class
B
,
class
O
>
void
ConvDepthWiseImpl1D_cpu_forward_kernel
(
const
std
::
array
<
DimSize_t
,
1
>&
strideDims
,
void
ConvDepthWiseImpl1D_cpu_forward_kernel
(
const
std
::
array
<
DimSize_t
,
1
>&
strideDims
,
const
std
::
array
<
DimSize_t
,
1
>&
/*
dilationDims
*/
,
const
std
::
array
<
DimSize_t
,
1
>&
dilationDims
,
const
std
::
array
<
DimSize_t
,
1
>&
kernelDims
,
const
std
::
array
<
DimSize_t
,
1
>&
kernelDims
,
const
std
::
array
<
DimSize_t
,
3
>&
inputDims
,
const
std
::
array
<
DimSize_t
,
3
>&
inputDims
,
const
void
*
input_
,
const
void
*
input_
,
...
@@ -56,6 +56,8 @@ void ConvDepthWiseImpl1D_cpu_forward_kernel(const std::array<DimSize_t, 1>& stri
...
@@ -56,6 +56,8 @@ void ConvDepthWiseImpl1D_cpu_forward_kernel(const std::array<DimSize_t, 1>& stri
const
std
::
size_t
oxSize
=
const
std
::
size_t
oxSize
=
static_cast
<
std
::
size_t
>
(
std
::
floor
(
static_cast
<
float
>
(
inputDims
[
2
]
-
kernelDims
[
0
]
+
strideDims
[
0
])
/
static_cast
<
std
::
size_t
>
(
std
::
floor
(
static_cast
<
float
>
(
inputDims
[
2
]
-
kernelDims
[
0
]
+
strideDims
[
0
])
/
static_cast
<
float
>
(
strideDims
[
0
])));
static_cast
<
float
>
(
strideDims
[
0
])));
const
DimSize_t
dilated_kernel_x
=
dilationDims
[
0
]
*
(
kernelDims
[
0
]
-
1
)
+
1
;
// TODO: kernel computation
// TODO: kernel computation
// output (batch, outCh, Xout, Yout)
// output (batch, outCh, Xout, Yout)
...
@@ -71,15 +73,17 @@ void ConvDepthWiseImpl1D_cpu_forward_kernel(const std::array<DimSize_t, 1>& stri
...
@@ -71,15 +73,17 @@ void ConvDepthWiseImpl1D_cpu_forward_kernel(const std::array<DimSize_t, 1>& stri
const
std
::
size_t
iIndex
=
(
ch
+
batch
*
inputDims
[
1
])
*
inputDims
[
2
];
const
std
::
size_t
iIndex
=
(
ch
+
batch
*
inputDims
[
1
])
*
inputDims
[
2
];
const
std
::
size_t
wIndex
=
ch
*
kernelDims
[
0
];
const
std
::
size_t
wIndex
=
ch
*
kernelDims
[
0
];
for
(
std
::
size_t
ox
=
0
;
ox
<
oxSize
;
++
ox
)
{
for
(
std
::
size_t
ox
=
0
;
ox
<
oxSize
;
++
ox
)
{
const
signedsize
difx
=
static_cast
<
signedsize
>
(
-
ox
*
strideDims
[
0
]);
// const signedsize difx = static_cast<signedsize>(- ox * strideDims[0]);
const
std
::
size_t
sxMin
=
static_cast
<
std
::
size_t
>
(
std
::
max
(
difx
,
signedsize
(
0
)));
// const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0)));
const
std
::
size_t
sxMax
=
(
static_cast
<
signedsize
>
(
inputDims
[
2
])
+
difx
)
<
0
?
0
:
((
inputDims
[
2
]
+
difx
)
>
kernelDims
[
0
]
?
kernelDims
[
0
]
:
inputDims
[
2
]
+
difx
);
// const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > kernelDims[0] ? kernelDims[0] : inputDims[2] + difx);
const
std
::
size_t
sxMin
=
0
;
const
std
::
size_t
sxMax
=
dilated_kernel_x
;
const
std
::
size_t
oIndexFull
=
oIndex
+
ox
;
const
std
::
size_t
oIndexFull
=
oIndex
+
ox
;
const
signedsize
ix
=
static_cast
<
signedsize
>
(
ox
*
strideDims
[
0
]);
const
signedsize
ix
=
static_cast
<
signedsize
>
(
ox
*
strideDims
[
0
]);
for
(
std
::
size_t
sx
=
sxMin
;
sx
<
sxMax
;
++
sx
)
{
for
(
std
::
size_t
sx
=
sxMin
;
sx
*
dilationDims
[
0
]
<
sxMax
;
++
sx
)
{
output
[
oIndexFull
]
+=
weights
[
wIndex
+
sx
]
*
output
[
oIndexFull
]
+=
weights
[
wIndex
+
sx
]
*
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
static_cast
<
signedsize
>
(
sx
))];
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
static_cast
<
signedsize
>
(
sx
*
dilationDims
[
0
]
))];
}
}
}
}
}
}
...
@@ -113,7 +117,7 @@ REGISTRAR(ConvDepthWiseImpl1D_cpu,
...
@@ -113,7 +117,7 @@ REGISTRAR(ConvDepthWiseImpl1D_cpu,
*/
*/
template
<
class
I
,
class
W
,
class
B
,
class
O
>
template
<
class
I
,
class
W
,
class
B
,
class
O
>
void
ConvDepthWiseImpl2D_cpu_forward_kernel
(
const
std
::
array
<
DimSize_t
,
2
>&
strideDims
,
void
ConvDepthWiseImpl2D_cpu_forward_kernel
(
const
std
::
array
<
DimSize_t
,
2
>&
strideDims
,
const
std
::
array
<
DimSize_t
,
2
>&
/*
dilationDims
*/
,
const
std
::
array
<
DimSize_t
,
2
>&
dilationDims
,
const
std
::
array
<
DimSize_t
,
2
>&
kernelDims
,
const
std
::
array
<
DimSize_t
,
2
>&
kernelDims
,
const
std
::
array
<
DimSize_t
,
4
>&
inputDims
,
const
std
::
array
<
DimSize_t
,
4
>&
inputDims
,
const
void
*
input_
,
const
void
*
input_
,
...
@@ -132,10 +136,12 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& stri
...
@@ -132,10 +136,12 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& stri
const
std
::
size_t
oxSize
=
const
std
::
size_t
oxSize
=
static_cast
<
std
::
size_t
>
(
std
::
floor
(
static_cast
<
float
>
(
inputDims
[
2
]
-
kernelDims
[
0
]
+
strideDims
[
0
])
/
static_cast
<
std
::
size_t
>
(
std
::
floor
(
static_cast
<
float
>
(
inputDims
[
2
]
-
kernelDims
[
0
]
+
strideDims
[
0
])
/
static_cast
<
float
>
(
strideDims
[
0
])));
static_cast
<
float
>
(
strideDims
[
0
])));
const
DimSize_t
dilated_kernel_x
=
dilationDims
[
0
]
*
(
kernelDims
[
0
]
-
1
)
+
1
;
// output W size
// output W size
const
std
::
size_t
oySize
=
const
std
::
size_t
oySize
=
static_cast
<
std
::
size_t
>
(
std
::
floor
(
static_cast
<
float
>
(
inputDims
[
3
]
-
kernelDims
[
1
]
+
strideDims
[
1
])
/
static_cast
<
std
::
size_t
>
(
std
::
floor
(
static_cast
<
float
>
(
inputDims
[
3
]
-
kernelDims
[
1
]
+
strideDims
[
1
])
/
static_cast
<
float
>
(
strideDims
[
1
])));
static_cast
<
float
>
(
strideDims
[
1
])));
const
DimSize_t
dilated_kernel_y
=
dilationDims
[
1
]
*
(
kernelDims
[
1
]
-
1
)
+
1
;
// TODO: kernel computation
// TODO: kernel computation
// output (batch, outCh, Xout, Yout)
// output (batch, outCh, Xout, Yout)
...
@@ -151,13 +157,17 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& stri
...
@@ -151,13 +157,17 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& stri
const
std
::
size_t
iIndex
=
(
ch
+
batch
*
inputDims
[
1
])
*
inputDims
[
2
]
*
inputDims
[
3
];
const
std
::
size_t
iIndex
=
(
ch
+
batch
*
inputDims
[
1
])
*
inputDims
[
2
]
*
inputDims
[
3
];
const
std
::
size_t
wIndex
=
ch
*
kernelDims
[
0
]
*
kernelDims
[
1
];
const
std
::
size_t
wIndex
=
ch
*
kernelDims
[
0
]
*
kernelDims
[
1
];
for
(
std
::
size_t
ox
=
0
;
ox
<
oxSize
;
++
ox
)
{
for
(
std
::
size_t
ox
=
0
;
ox
<
oxSize
;
++
ox
)
{
const
signedsize
difx
=
static_cast
<
signedsize
>
(
-
ox
*
strideDims
[
0
]);
// const signedsize difx = static_cast<signedsize>(- ox * strideDims[0]);
const
std
::
size_t
sxMin
=
static_cast
<
std
::
size_t
>
(
std
::
max
(
difx
,
signedsize
(
0
)));
// const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0)));
const
std
::
size_t
sxMax
=
(
static_cast
<
signedsize
>
(
inputDims
[
2
])
+
difx
)
<
0
?
0
:
((
inputDims
[
2
]
+
difx
)
>
kernelDims
[
0
]
?
kernelDims
[
0
]
:
inputDims
[
2
]
+
difx
);
// const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > kernelDims[0] ? kernelDims[0] : inputDims[2] + difx);
const
std
::
size_t
sxMin
=
0
;
const
std
::
size_t
sxMax
=
dilated_kernel_x
;
for
(
std
::
size_t
oy
=
0
;
oy
<
oySize
;
++
oy
)
{
for
(
std
::
size_t
oy
=
0
;
oy
<
oySize
;
++
oy
)
{
const
signedsize
dify
=
static_cast
<
signedsize
>
(
-
oy
*
strideDims
[
1
]);
// const signedsize dify = static_cast<signedsize>(- oy * strideDims[1]);
const
std
::
size_t
syMin
=
static_cast
<
std
::
size_t
>
(
std
::
max
(
dify
,
signedsize
(
0
)));
// const std::size_t syMin = static_cast<std::size_t>(std::max(dify, signedsize(0)));
const
std
::
size_t
syMax
=
(
static_cast
<
signedsize
>
(
inputDims
[
3
])
+
dify
)
<
0
?
0
:
((
inputDims
[
3
]
+
dify
)
>
kernelDims
[
1
]
?
kernelDims
[
1
]
:
inputDims
[
3
]
+
dify
);
// const std::size_t syMax = (static_cast<signedsize>(inputDims[3]) + dify) < 0 ? 0 : ((inputDims[3] + dify) > kernelDims[1] ? kernelDims[1] : inputDims[3] + dify);
const
std
::
size_t
syMin
=
0
;
const
std
::
size_t
syMax
=
dilated_kernel_y
;
const
std
::
size_t
oIndexFull
=
oIndex
+
ox
*
oySize
+
oy
;
const
std
::
size_t
oIndexFull
=
oIndex
+
ox
*
oySize
+
oy
;
const
signedsize
ix
=
static_cast
<
signedsize
>
(
ox
*
strideDims
[
0
]);
const
signedsize
ix
=
static_cast
<
signedsize
>
(
ox
*
strideDims
[
0
]);
const
signedsize
iy
=
static_cast
<
signedsize
>
(
oy
*
strideDims
[
1
]);
const
signedsize
iy
=
static_cast
<
signedsize
>
(
oy
*
strideDims
[
1
]);
...
@@ -173,10 +183,10 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& stri
...
@@ -173,10 +183,10 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& stri
weights
[
wIndex
+
2
*
kernelDims
[
1
]
+
1
]
*
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
2
)
*
inputDims
[
3
]
+
static_cast
<
std
::
size_t
>
(
iy
+
1
)]
+
weights
[
wIndex
+
2
*
kernelDims
[
1
]
+
1
]
*
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
2
)
*
inputDims
[
3
]
+
static_cast
<
std
::
size_t
>
(
iy
+
1
)]
+
weights
[
wIndex
+
2
*
kernelDims
[
1
]
+
2
]
*
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
2
)
*
inputDims
[
3
]
+
static_cast
<
std
::
size_t
>
(
iy
+
2
)]);
weights
[
wIndex
+
2
*
kernelDims
[
1
]
+
2
]
*
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
2
)
*
inputDims
[
3
]
+
static_cast
<
std
::
size_t
>
(
iy
+
2
)]);
}
else
{
}
else
{
for
(
std
::
size_t
sx
=
sxMin
;
sx
<
sxMax
;
++
sx
)
{
for
(
std
::
size_t
sx
=
sxMin
;
sx
*
dilationDims
[
0
]
<
sxMax
;
++
sx
)
{
for
(
std
::
size_t
sy
=
syMin
;
sy
<
syMax
;
++
sy
)
{
for
(
std
::
size_t
sy
=
syMin
;
sy
*
dilationDims
[
1
]
<
syMax
;
++
sy
)
{
output
[
oIndexFull
]
+=
weights
[
wIndex
+
sx
*
kernelDims
[
1
]
+
sy
]
*
output
[
oIndexFull
]
+=
weights
[
wIndex
+
sx
*
kernelDims
[
1
]
+
sy
]
*
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
static_cast
<
signedsize
>
(
sx
))
*
inputDims
[
3
]
+
static_cast
<
std
::
size_t
>
(
iy
+
static_cast
<
signedsize
>
(
sy
))];
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
static_cast
<
signedsize
>
(
sx
*
dilationDims
[
0
]
))
*
inputDims
[
3
]
+
static_cast
<
std
::
size_t
>
(
iy
+
static_cast
<
signedsize
>
(
sy
*
dilationDims
[
1
]
))];
}
}
}
}
}
}
...
...
This diff is collapsed.
Click to expand it.
include/aidge/backend/cpu/operator/ConvImpl_kernels.hpp
+
29
−
19
View file @
10d79752
...
@@ -40,7 +40,7 @@ namespace Aidge {
...
@@ -40,7 +40,7 @@ namespace Aidge {
*/
*/
template
<
class
I
,
class
W
,
class
B
,
class
O
>
template
<
class
I
,
class
W
,
class
B
,
class
O
>
void
ConvImpl1D_cpu_forward_kernel
(
const
std
::
array
<
DimSize_t
,
1
>&
strideDims
,
void
ConvImpl1D_cpu_forward_kernel
(
const
std
::
array
<
DimSize_t
,
1
>&
strideDims
,
const
std
::
array
<
DimSize_t
,
1
>&
/*
dilationDims
*/
,
const
std
::
array
<
DimSize_t
,
1
>&
dilationDims
,
const
std
::
array
<
DimSize_t
,
1
>&
kernelDims
,
const
std
::
array
<
DimSize_t
,
1
>&
kernelDims
,
const
std
::
array
<
DimSize_t
,
3
>&
inputDims
,
const
std
::
array
<
DimSize_t
,
3
>&
inputDims
,
DimSize_t
outChannels
,
DimSize_t
outChannels
,
...
@@ -57,8 +57,9 @@ void ConvImpl1D_cpu_forward_kernel(const std::array<DimSize_t, 1>& strideDims,
...
@@ -57,8 +57,9 @@ void ConvImpl1D_cpu_forward_kernel(const std::array<DimSize_t, 1>& strideDims,
// output H size
// output H size
const
std
::
size_t
oxSize
=
const
std
::
size_t
oxSize
=
static_cast
<
std
::
size_t
>
(
std
::
floor
(
static_cast
<
float
>
(
inputDims
[
2
]
-
kernelDims
[
0
]
+
strideDims
[
0
])
/
static_cast
<
std
::
size_t
>
(
std
::
floor
(
static_cast
<
float
>
(
inputDims
[
2
]
-
dilationDims
[
0
]
*
(
kernelDims
[
0
]
-
1
)
-
1
+
strideDims
[
0
])
/
static_cast
<
float
>
(
strideDims
[
0
])));
static_cast
<
float
>
(
strideDims
[
0
])));
const
DimSize_t
dilated_kernel_x
=
dilationDims
[
0
]
*
(
kernelDims
[
0
]
-
1
)
+
1
;
// TODO: kernel computation
// TODO: kernel computation
// output (batch, outCh, Xout, Yout)
// output (batch, outCh, Xout, Yout)
...
@@ -76,15 +77,17 @@ void ConvImpl1D_cpu_forward_kernel(const std::array<DimSize_t, 1>& strideDims,
...
@@ -76,15 +77,17 @@ void ConvImpl1D_cpu_forward_kernel(const std::array<DimSize_t, 1>& strideDims,
const
std
::
size_t
iIndex
=
(
inCh
+
batch
*
inputDims
[
1
])
*
inputDims
[
2
];
const
std
::
size_t
iIndex
=
(
inCh
+
batch
*
inputDims
[
1
])
*
inputDims
[
2
];
const
std
::
size_t
wIndex
=
(
inCh
+
outCh
*
inputDims
[
1
])
*
kernelDims
[
0
];
const
std
::
size_t
wIndex
=
(
inCh
+
outCh
*
inputDims
[
1
])
*
kernelDims
[
0
];
for
(
std
::
size_t
ox
=
0
;
ox
<
oxSize
;
++
ox
)
{
for
(
std
::
size_t
ox
=
0
;
ox
<
oxSize
;
++
ox
)
{
const
signedsize
difx
=
static_cast
<
signedsize
>
(
-
ox
*
strideDims
[
0
]);
// const signedsize difx = static_cast<signedsize>(- ox * strideDims[0]);
const
std
::
size_t
sxMin
=
static_cast
<
std
::
size_t
>
(
std
::
max
(
difx
,
signedsize
(
0
)));
// const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0)));
const
std
::
size_t
sxMax
=
(
static_cast
<
signedsize
>
(
inputDims
[
2
])
+
difx
)
<
0
?
0
:
((
inputDims
[
2
]
+
difx
)
>
kernelDims
[
0
]
?
kernelDims
[
0
]
:
inputDims
[
2
]
+
difx
);
// const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > kernelDims[0] ? kernelDims[0] : inputDims[2] + difx);
const
std
::
size_t
sxMin
=
0
;
const
std
::
size_t
sxMax
=
dilated_kernel_x
;
const
std
::
size_t
oIndexFull
=
oIndex
+
ox
;
const
std
::
size_t
oIndexFull
=
oIndex
+
ox
;
const
signedsize
ix
=
static_cast
<
signedsize
>
(
ox
*
strideDims
[
0
]);
const
signedsize
ix
=
static_cast
<
signedsize
>
(
ox
*
strideDims
[
0
]);
for
(
std
::
size_t
sx
=
sxMin
;
sx
<
sxMax
;
++
sx
)
{
for
(
std
::
size_t
sx
=
sxMin
;
sx
*
dilationDims
[
0
]
<
sxMax
;
++
sx
)
{
output
[
oIndexFull
]
+=
weights
[
wIndex
+
sx
]
*
output
[
oIndexFull
]
+=
weights
[
wIndex
+
sx
]
*
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
static_cast
<
signedsize
>
(
sx
))];
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
static_cast
<
signedsize
>
(
sx
*
dilationDims
[
0
]
))];
}
}
}
}
}
}
...
@@ -122,7 +125,7 @@ REGISTRAR(ConvImpl1D_cpu,
...
@@ -122,7 +125,7 @@ REGISTRAR(ConvImpl1D_cpu,
*/
*/
template
<
class
I
,
class
W
,
class
B
,
class
O
>
template
<
class
I
,
class
W
,
class
B
,
class
O
>
void
ConvImpl2D_cpu_forward_kernel
(
const
std
::
array
<
DimSize_t
,
2
>&
strideDims
,
void
ConvImpl2D_cpu_forward_kernel
(
const
std
::
array
<
DimSize_t
,
2
>&
strideDims
,
const
std
::
array
<
DimSize_t
,
2
>&
/*
dilationDims
*/
,
const
std
::
array
<
DimSize_t
,
2
>&
dilationDims
,
const
std
::
array
<
DimSize_t
,
2
>&
kernelDims
,
const
std
::
array
<
DimSize_t
,
2
>&
kernelDims
,
const
std
::
array
<
DimSize_t
,
4
>
&
inputDims
,
const
std
::
array
<
DimSize_t
,
4
>
&
inputDims
,
DimSize_t
outChannels
,
DimSize_t
outChannels
,
...
@@ -139,12 +142,15 @@ void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims,
...
@@ -139,12 +142,15 @@ void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims,
// output H size
// output H size
const
std
::
size_t
oxSize
=
const
std
::
size_t
oxSize
=
static_cast
<
std
::
size_t
>
(
std
::
floor
(
static_cast
<
float
>
(
inputDims
[
2
]
-
kernelDims
[
0
]
+
strideDims
[
0
])
/
static_cast
<
std
::
size_t
>
(
std
::
floor
(
static_cast
<
float
>
(
inputDims
[
2
]
-
dilationDims
[
0
]
*
(
kernelDims
[
0
]
-
1
)
-
1
+
strideDims
[
0
])
/
static_cast
<
float
>
(
strideDims
[
0
])));
static_cast
<
float
>
(
strideDims
[
0
])));
const
DimSize_t
dilated_kernel_x
=
dilationDims
[
0
]
*
(
kernelDims
[
0
]
-
1
)
+
1
;
// output W size
// output W size
const
std
::
size_t
oySize
=
const
std
::
size_t
oySize
=
static_cast
<
std
::
size_t
>
(
std
::
floor
(
static_cast
<
float
>
(
inputDims
[
3
]
-
kernelDims
[
1
]
+
strideDims
[
1
])
/
static_cast
<
std
::
size_t
>
(
std
::
floor
(
static_cast
<
float
>
(
inputDims
[
3
]
-
dilationDims
[
1
]
*
(
kernelDims
[
1
]
-
1
)
-
1
+
strideDims
[
1
])
/
static_cast
<
float
>
(
strideDims
[
1
])));
static_cast
<
float
>
(
strideDims
[
1
])));
const
DimSize_t
dilated_kernel_y
=
dilationDims
[
1
]
*
(
kernelDims
[
1
]
-
1
)
+
1
;
// TODO: kernel computation
// TODO: kernel computation
// output (batch, outCh, Xout, Yout)
// output (batch, outCh, Xout, Yout)
...
@@ -162,13 +168,17 @@ void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims,
...
@@ -162,13 +168,17 @@ void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims,
const
std
::
size_t
iIndex
=
(
inCh
+
batch
*
inputDims
[
1
])
*
inputDims
[
2
]
*
inputDims
[
3
];
const
std
::
size_t
iIndex
=
(
inCh
+
batch
*
inputDims
[
1
])
*
inputDims
[
2
]
*
inputDims
[
3
];
const
std
::
size_t
wIndex
=
(
inCh
+
outCh
*
inputDims
[
1
])
*
kernelDims
[
0
]
*
kernelDims
[
1
];
const
std
::
size_t
wIndex
=
(
inCh
+
outCh
*
inputDims
[
1
])
*
kernelDims
[
0
]
*
kernelDims
[
1
];
for
(
std
::
size_t
ox
=
0
;
ox
<
oxSize
;
++
ox
)
{
for
(
std
::
size_t
ox
=
0
;
ox
<
oxSize
;
++
ox
)
{
const
signedsize
difx
=
static_cast
<
signedsize
>
(
-
ox
*
strideDims
[
0
]);
// const signedsize difx = static_cast<signedsize>(- ox * strideDims[0]);
const
std
::
size_t
sxMin
=
static_cast
<
std
::
size_t
>
(
std
::
max
(
difx
,
signedsize
(
0
)));
// const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0)));
const
std
::
size_t
sxMax
=
(
static_cast
<
signedsize
>
(
inputDims
[
2
])
+
difx
)
<
0
?
0
:
((
inputDims
[
2
]
+
difx
)
>
kernelDims
[
0
]
?
kernelDims
[
0
]
:
inputDims
[
2
]
+
difx
);
// const std::size_t sxMax = (static_cast<signedsize>(inputDims[2]) + difx) < 0 ? 0 : ((inputDims[2] + difx) > kernelDims[0] ? kernelDims[0] : inputDims[2] + difx);
const
std
::
size_t
sxMin
=
0
;
const
std
::
size_t
sxMax
=
dilated_kernel_x
;
for
(
std
::
size_t
oy
=
0
;
oy
<
oySize
;
++
oy
)
{
for
(
std
::
size_t
oy
=
0
;
oy
<
oySize
;
++
oy
)
{
const
signedsize
dify
=
static_cast
<
signedsize
>
(
-
oy
*
strideDims
[
1
]);
// const signedsize dify = static_cast<signedsize>(- oy * strideDims[1]);
const
std
::
size_t
syMin
=
static_cast
<
std
::
size_t
>
(
std
::
max
(
dify
,
signedsize
(
0
)));
// const std::size_t syMin = static_cast<std::size_t>(std::max(dify, signedsize(0)));
const
std
::
size_t
syMax
=
(
static_cast
<
signedsize
>
(
inputDims
[
3
])
+
dify
)
<
0
?
0
:
((
inputDims
[
3
]
+
dify
)
>
kernelDims
[
1
]
?
kernelDims
[
1
]
:
inputDims
[
3
]
+
dify
);
// const std::size_t syMax = (static_cast<signedsize>(inputDims[3]) + dify) < 0 ? 0 : ((inputDims[3] + dify) > kernelDims[1] ? kernelDims[1] : inputDims[3] + dify);
const
std
::
size_t
syMin
=
0
;
const
std
::
size_t
syMax
=
dilated_kernel_y
;
const
std
::
size_t
oIndexFull
=
oIndex
+
ox
*
oySize
+
oy
;
const
std
::
size_t
oIndexFull
=
oIndex
+
ox
*
oySize
+
oy
;
const
signedsize
ix
=
static_cast
<
signedsize
>
(
ox
*
strideDims
[
0
]);
const
signedsize
ix
=
static_cast
<
signedsize
>
(
ox
*
strideDims
[
0
]);
const
signedsize
iy
=
static_cast
<
signedsize
>
(
oy
*
strideDims
[
1
]);
const
signedsize
iy
=
static_cast
<
signedsize
>
(
oy
*
strideDims
[
1
]);
...
@@ -184,10 +194,10 @@ void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims,
...
@@ -184,10 +194,10 @@ void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims,
weights
[
wIndex
+
2
*
kernelDims
[
1
]
+
1
]
*
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
2
)
*
inputDims
[
3
]
+
static_cast
<
std
::
size_t
>
(
iy
+
1
)]
+
weights
[
wIndex
+
2
*
kernelDims
[
1
]
+
1
]
*
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
2
)
*
inputDims
[
3
]
+
static_cast
<
std
::
size_t
>
(
iy
+
1
)]
+
weights
[
wIndex
+
2
*
kernelDims
[
1
]
+
2
]
*
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
2
)
*
inputDims
[
3
]
+
static_cast
<
std
::
size_t
>
(
iy
+
2
)]);
weights
[
wIndex
+
2
*
kernelDims
[
1
]
+
2
]
*
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
2
)
*
inputDims
[
3
]
+
static_cast
<
std
::
size_t
>
(
iy
+
2
)]);
}
else
{
}
else
{
for
(
std
::
size_t
sx
=
sxMin
;
sx
<
sxMax
;
++
sx
)
{
for
(
std
::
size_t
sx
=
sxMin
;
sx
*
dilationDims
[
0
]
<
sxMax
;
++
sx
)
{
for
(
std
::
size_t
sy
=
syMin
;
sy
<
syMax
;
++
sy
)
{
for
(
std
::
size_t
sy
=
syMin
;
sy
*
dilationDims
[
1
]
<
syMax
;
++
sy
)
{
output
[
oIndexFull
]
+=
weights
[
wIndex
+
sx
*
kernelDims
[
1
]
+
sy
]
*
output
[
oIndexFull
]
+=
weights
[
wIndex
+
sx
*
kernelDims
[
1
]
+
sy
]
*
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
static_cast
<
signedsize
>
(
sx
))
*
inputDims
[
3
]
+
static_cast
<
std
::
size_t
>
(
iy
+
static_cast
<
signedsize
>
(
sy
))];
input
[
iIndex
+
static_cast
<
std
::
size_t
>
(
ix
+
static_cast
<
signedsize
>
(
sx
*
dilationDims
[
0
]
))
*
inputDims
[
3
]
+
static_cast
<
std
::
size_t
>
(
iy
+
static_cast
<
signedsize
>
(
sy
*
dilationDims
[
1
]
))];
}
}
}
}
}
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment