Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
aidge_backend_cpu
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jerome Hue
aidge_backend_cpu
Commits
fd4dd69d
Commit
fd4dd69d
authored
6 months ago
by
Jerome Hue
Browse files
Options
Downloads
Patches
Plain Diff
Add a new test for a full nn using leaky neuron
parent
37bb4cb9
No related branches found
No related tags found
No related merge requests found
Pipeline
#61380
failed
6 months ago
Stage: static_analysis
Stage: build
Stage: test
Stage: coverage
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/operator/SubImpl.cpp
+0
-3
0 additions, 3 deletions
src/operator/SubImpl.cpp
unit_tests/operator/Test_MetaOperator.cpp
+102
-10
102 additions, 10 deletions
unit_tests/operator/Test_MetaOperator.cpp
with
102 additions
and
13 deletions
src/operator/SubImpl.cpp
+
0
−
3
View file @
fd4dd69d
...
@@ -29,9 +29,6 @@ void Aidge::SubImpl_cpu::forward() {
...
@@ -29,9 +29,6 @@ void Aidge::SubImpl_cpu::forward() {
// Find the correct kernel type
// Find the correct kernel type
const
auto
impl
=
Registrar
<
SubImpl_cpu
>::
create
(
getBestMatch
(
getRequiredSpec
()));
const
auto
impl
=
Registrar
<
SubImpl_cpu
>::
create
(
getBestMatch
(
getRequiredSpec
()));
Log
::
info
(
"Sub Operator Kernel"
);
op_
.
getInput
(
0
)
->
print
();
op_
.
getInput
(
1
)
->
print
();
// Call kernel
// Call kernel
impl
.
forward
(
op_
.
getInput
(
0
)
->
dims
(),
impl
.
forward
(
op_
.
getInput
(
0
)
->
dims
(),
...
...
This diff is collapsed.
Click to expand it.
unit_tests/operator/Test_MetaOperator.cpp
+
102
−
10
View file @
fd4dd69d
...
@@ -10,16 +10,18 @@
...
@@ -10,16 +10,18 @@
********************************************************************************/
********************************************************************************/
#include
<aidge/filler/Filler.hpp>
#include
<aidge/filler/Filler.hpp>
#include
<aidge/operator/FC.hpp>
#include
<catch2/catch_test_macros.hpp>
#include
<catch2/catch_test_macros.hpp>
#include
<cmath>
#include
<cmath>
#include
<cstdlib>
#include
<cstdlib>
#include
<memory>
#include
<memory>
#include
<random>
#include
<random>
#include
"aidge/backend/cpu/operator/ConvImpl.hpp"
#include
"aidge/backend/cpu/operator/ConvImpl.hpp"
#include
"aidge/backend/cpu/operator/PadImpl.hpp"
#include
"aidge/backend/cpu/operator/PadImpl.hpp"
#include
"aidge/data/Tensor.hpp"
#include
"aidge/data/Tensor.hpp"
#include
"aidge/operator/Conv.hpp"
#include
"aidge/operator/Conv.hpp"
#include
"aidge/operator/FC.hpp"
#include
"aidge/operator/Identity.hpp"
#include
"aidge/operator/Identity.hpp"
#include
"aidge/operator/MetaOperator.hpp"
#include
"aidge/operator/MetaOperator.hpp"
#include
"aidge/operator/MetaOperatorDefs.hpp"
#include
"aidge/operator/MetaOperatorDefs.hpp"
...
@@ -29,6 +31,7 @@
...
@@ -29,6 +31,7 @@
#include
"aidge/scheduler/ParallelScheduler.hpp"
#include
"aidge/scheduler/ParallelScheduler.hpp"
#include
"aidge/scheduler/SequentialScheduler.hpp"
#include
"aidge/scheduler/SequentialScheduler.hpp"
#include
"aidge/utils/TensorUtils.hpp"
#include
"aidge/utils/TensorUtils.hpp"
#include
"aidge/filler/Filler.hpp"
using
namespace
Aidge
;
using
namespace
Aidge
;
...
@@ -211,6 +214,7 @@ TEST_CASE("[cpu/operator] MetaOperator", "[MetaOperator][CPU]") {
...
@@ -211,6 +214,7 @@ TEST_CASE("[cpu/operator] MetaOperator", "[MetaOperator][CPU]") {
PaddedConv
(
3
,
4
,
{
3
,
3
},
"myPaddedConv"
,
{
1
,
1
},
{
1
,
1
,
1
,
1
});
PaddedConv
(
3
,
4
,
{
3
,
3
},
"myPaddedConv"
,
{
1
,
1
},
{
1
,
1
,
1
,
1
});
}
}
SECTION
(
"LSTM(forward)"
)
{
SECTION
(
"LSTM(forward)"
)
{
auto
pop
=
Pop
();
auto
pop
=
Pop
();
auto
myLSTM
=
LSTM
(
32
,
64
,
0
,
true
,
"ltsm"
);
auto
myLSTM
=
LSTM
(
32
,
64
,
0
,
true
,
"ltsm"
);
auto
op
=
auto
op
=
...
@@ -279,6 +283,7 @@ TEST_CASE("[cpu/operator] MetaOperator", "[MetaOperator][CPU]") {
...
@@ -279,6 +283,7 @@ TEST_CASE("[cpu/operator] MetaOperator", "[MetaOperator][CPU]") {
REQUIRE
(
microGraphScheduler
->
getStaticScheduling
(
1
).
size
()
==
24
);
REQUIRE
(
microGraphScheduler
->
getStaticScheduling
(
1
).
size
()
==
24
);
REQUIRE
(
microGraphScheduler
->
getStaticScheduling
(
15
).
size
()
==
24
);
REQUIRE
(
microGraphScheduler
->
getStaticScheduling
(
15
).
size
()
==
24
);
}
}
SECTION
(
"LSTM(forward_values)"
)
{
SECTION
(
"LSTM(forward_values)"
)
{
auto
myLSTM
=
LSTM
(
2
,
3
,
0
,
true
,
"ltsm"
);
auto
myLSTM
=
LSTM
(
2
,
3
,
0
,
true
,
"ltsm"
);
auto
op
=
auto
op
=
...
@@ -348,6 +353,7 @@ TEST_CASE("[cpu/operator] MetaOperator", "[MetaOperator][CPU]") {
...
@@ -348,6 +353,7 @@ TEST_CASE("[cpu/operator] MetaOperator", "[MetaOperator][CPU]") {
REQUIRE
(
approxEq
<
float
>
(
*
(
op
->
getOutput
(
0
)),
*
myHiddenState
));
REQUIRE
(
approxEq
<
float
>
(
*
(
op
->
getOutput
(
0
)),
*
myHiddenState
));
}
}
SECTION
(
"LSTM(forward_values_seq)"
)
{
SECTION
(
"LSTM(forward_values_seq)"
)
{
auto
pop
=
Pop
();
auto
pop
=
Pop
();
auto
myLSTM
=
LSTM
(
2
,
3
,
2
,
true
,
"ltsm"
);
auto
myLSTM
=
LSTM
(
2
,
3
,
2
,
true
,
"ltsm"
);
...
@@ -413,6 +419,7 @@ TEST_CASE("[cpu/operator] MetaOperator", "[MetaOperator][CPU]") {
...
@@ -413,6 +419,7 @@ TEST_CASE("[cpu/operator] MetaOperator", "[MetaOperator][CPU]") {
REQUIRE
(
approxEq
<
float
>
(
*
(
op
->
getOutput
(
0
)),
*
myHiddenState
));
REQUIRE
(
approxEq
<
float
>
(
*
(
op
->
getOutput
(
0
)),
*
myHiddenState
));
}
}
SECTION
(
"LSTM(forward_values_seq_flatten)(sequential)"
)
{
SECTION
(
"LSTM(forward_values_seq_flatten)(sequential)"
)
{
auto
pop
=
Pop
();
auto
pop
=
Pop
();
auto
myLSTM
=
LSTM
(
2
,
3
,
2
,
true
,
"ltsm"
);
auto
myLSTM
=
LSTM
(
2
,
3
,
2
,
true
,
"ltsm"
);
...
@@ -592,18 +599,103 @@ TEST_CASE("[cpu/operator] MetaOperator", "[MetaOperator][CPU]") {
...
@@ -592,18 +599,103 @@ TEST_CASE("[cpu/operator] MetaOperator", "[MetaOperator][CPU]") {
}
}
SECTION
(
"Leaky(forward)(fixed)"
)
{
SECTION
(
"Leaky(forward)(fixed)"
)
{
constexpr
auto
inChannels
=
10
;
constexpr
auto
outChannels
=
5
;
std
::
shared_ptr
<
Tensor
>
input
=
std
::
make_shared
<
Tensor
>
(
constexpr
auto
beta
=
0.95
;
Array3D
<
float
,
2
,
3
,
2
>
{{{{
1.0
,
2.0
},
{
3.0
,
4.0
},
{
5.0
,
6.0
}},
{{
2.0
,
3.0
},
{
4.0
,
5.0
},
{
6.0
,
7.0
}}}});
constexpr
auto
beta
=
0.9
;
constexpr
auto
threshold
=
1.0
;
constexpr
auto
threshold
=
1.0
;
auto
pop
=
Pop
(
"pop"
);
constexpr
auto
nbTimeSteps
=
2
;
auto
leaky
=
Leaky
(
2
,
beta
,
threshold
,
"leaky"
);
auto
myWeights
=
std
::
make_shared
<
Tensor
>
(
Array2D
<
float
,
outChannels
,
inChannels
>
{{
{
0.1
,
0.2
,
0.3
,
0.4
,
0.5
,
0.6
,
0.7
,
0.8
,
0.9
,
1.0
},
{
1.0
,
0.9
,
0.8
,
0.7
,
0.6
,
0.5
,
0.4
,
0.3
,
0.2
,
0.1
},
{
0.5
,
0.6
,
0.7
,
0.8
,
0.9
,
1.0
,
0.1
,
0.2
,
0.3
,
0.4
},
{
0.4
,
0.3
,
0.2
,
0.1
,
0.0
,
0.1
,
0.2
,
0.3
,
0.4
,
0.5
},
{
0.9
,
0.8
,
0.7
,
0.6
,
0.5
,
0.4
,
0.3
,
0.2
,
0.1
,
0.0
},
}});
auto
myWeights2
=
std
::
make_shared
<
Tensor
>
(
Array2D
<
float
,
inChannels
,
outChannels
>
{{
{
0.1
,
0.2
,
0.3
,
0.4
,
0.5
},
{
0.6
,
0.7
,
0.8
,
0.9
,
1.0
},
{
1.0
,
0.9
,
0.8
,
0.7
,
0.6
},
{
0.5
,
0.4
,
0.3
,
0.2
,
0.1
},
{
0.5
,
0.6
,
0.7
,
0.8
,
0.9
},
{
1.0
,
0.1
,
0.2
,
0.3
,
0.4
},
{
0.4
,
0.3
,
0.2
,
0.1
,
0.0
},
{
0.1
,
0.2
,
0.3
,
0.4
,
0.5
},
{
0.9
,
0.8
,
0.7
,
0.6
,
0.5
},
{
0.4
,
0.3
,
0.2
,
0.1
,
0.0
},
}});
auto
myInput
=
std
::
make_shared
<
Tensor
>
(
Array2D
<
float
,
2
,
10
>
{{
{
0.1
,
0.2
,
0.3
,
0.4
,
0.5
,
0.6
,
0.7
,
0.8
,
0.9
,
1.0
},
{
1.0
,
0.9
,
0.8
,
0.7
,
0.6
,
0.5
,
0.4
,
0.3
,
0.2
,
0.1
},
}});
// py/snn Torch computed result, output of fc1 at time step 1
auto
expectedOutputlif1ts1
=
std
::
make_shared
<
Tensor
>
(
Array2D
<
float
,
2
,
5
>
{{
{
3.850
,
2.2000
,
2.6500
,
1.5000
,
1.6500
},
{
2.200
,
3.8500
,
3.4000
,
1.2500
,
3.3000
},
}});
auto
expectedOutputfc2ts1
=
std
::
make_shared
<
Tensor
>
(
Array2D
<
float
,
2
,
10
>
{{
{
1.5000
,
4.0000
,
4.0000
,
1.5000
,
3.5000
,
2.0000
,
1.0000
,
1.5000
,
3.5000
,
1.0000
},
{
1.5000
,
4.0000
,
4.0000
,
1.5000
,
3.5000
,
2.0000
,
1.0000
,
1.5000
,
3.5000
,
1.0000
},
}});
auto
expectedOutputlif1ts2
=
std
::
make_shared
<
Tensor
>
(
Array2D
<
float
,
2
,
5
>
{{
{
6.5075
,
3.2900
,
4.1675
,
1.9250
,
2.2175
},
{
3.2900
,
6.5075
,
5.6300
,
1.4375
,
5.4350
},
}});
// NOTE: Same output as before, because for all channels, we have a potential higher than threshold.
// Thus the lif neuron fires at every timestep for every channel.
auto
expectedOutputfc2ts2
=
std
::
make_shared
<
Tensor
>
(
Array2D
<
float
,
2
,
10
>
{{
{
1.5000
,
4.0000
,
4.0000
,
1.5000
,
3.5000
,
2.0000
,
1.0000
,
1.5000
,
3.5000
,
1.0000
},
{
1.5000
,
4.0000
,
4.0000
,
1.5000
,
3.5000
,
2.0000
,
1.0000
,
1.5000
,
3.5000
,
1.0000
},
}});
auto
init
=
std
::
make_shared
<
Tensor
>
(
Array2D
<
float
,
2
,
5
>
{});
uniformFiller
<
float
>
(
init
,
0.0
,
0.0
);
auto
fc1
=
FC
(
inChannels
,
outChannels
,
true
,
"myfc"
);
auto
fc2
=
FC
(
outChannels
,
inChannels
,
true
,
"fc2"
);
// NOTE: Account for init step by adding 1 to the max timestep parameter.
auto
lif1
=
Leaky
(
nbTimeSteps
+
1
,
beta
,
threshold
,
"leaky"
);
// associateInput() does not work
fc1
->
input
(
1
).
first
->
getOperator
()
->
setOutput
(
0
,
myWeights
);
fc2
->
input
(
1
).
first
->
getOperator
()
->
setOutput
(
0
,
myWeights2
);
auto
fc1Op
=
std
::
static_pointer_cast
<
OperatorTensor
>
(
fc1
->
getOperator
());
auto
lif1Op
=
std
::
static_pointer_cast
<
MetaOperator_Op
>
(
lif1
->
getOperator
());
auto
fc2Op
=
std
::
static_pointer_cast
<
OperatorTensor
>
(
fc2
->
getOperator
());
fc1Op
->
associateInput
(
0
,
myInput
);
lif1Op
->
associateInput
(
1
,
init
);
lif1Op
->
associateInput
(
2
,
init
);
fc1
->
addChild
(
lif1
,
0
,
0
);
lif1
->
addChild
(
fc2
,
1
,
0
);
auto
g
=
std
::
make_shared
<
GraphView
>
();
g
->
add
({
fc1
,
lif1
,
fc2
});
g
->
compile
(
"cpu"
,
DataType
::
Float32
);
auto
scheduler
=
SequentialScheduler
(
g
);
REQUIRE
(
true
);
// Forward 1 (simulate timestep 0)
scheduler
.
forward
(
true
);
REQUIRE
(
approxEq
<
float
>
(
*
(
lif1Op
->
getOutput
(
0
)),
*
(
expectedOutputlif1ts1
)));
REQUIRE
(
approxEq
<
float
>
(
*
(
fc2Op
->
getOutput
(
0
)),
*
(
expectedOutputfc2ts1
)));
// Forward 1 (simulate timestep 1)
scheduler
.
forward
(
true
);
REQUIRE
(
approxEq
<
float
>
(
*
(
lif1Op
->
getOutput
(
0
)),
*
(
expectedOutputlif1ts2
)));
REQUIRE
(
approxEq
<
float
>
(
*
(
fc2Op
->
getOutput
(
0
)),
*
(
expectedOutputfc2ts2
)));
}
}
SECTION
(
"Leaky(forward)"
)
{
SECTION
(
"Leaky(forward)"
)
{
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment