Skip to content
Snippets Groups Projects
Commit c97f76a4 authored by Houssem ROUIS's avatar Houssem ROUIS
Browse files

changed argument to std::size_t for fc kernel

parent f4454951
No related branches found
No related tags found
No related merge requests found
Pipeline #39730 failed
...@@ -29,7 +29,7 @@ ...@@ -29,7 +29,7 @@
namespace Aidge { namespace Aidge {
class FCImplForward_cuda : public Registrable<FCImplForward_cuda, class FCImplForward_cuda : public Registrable<FCImplForward_cuda,
std::tuple<DataType>, std::tuple<DataType>,
void(unsigned int , unsigned int , unsigned int, bool, const void* , const void* , const void* , void*)> {}; void(std::size_t , std::size_t, std::size_t, bool, const void* , const void* , const void* , void*)> {};
class FCImpl_cuda : public OperatorImpl { class FCImpl_cuda : public OperatorImpl {
private: private:
// CuDNN specific variables // CuDNN specific variables
...@@ -47,7 +47,7 @@ public: ...@@ -47,7 +47,7 @@ public:
// ~FCImpl_cuda(); // ~FCImpl_cuda();
private: private:
template <class T> void forward_(const Tensor& input0, const Tensor& input1, const Tensor& input2, bool noBias, DimSize_t outChannels); template <class T> void forward_(const Tensor& input0, const Tensor& input1, const Tensor& input2, bool noBias, std::size_t outChannels);
}; };
namespace { namespace {
......
...@@ -24,7 +24,7 @@ ...@@ -24,7 +24,7 @@
namespace Aidge { namespace Aidge {
template<class T> template<class T>
void fc_forward_cuda(DimSize_t nbInputs, DimSize_t inChannels, DimSize_t outChannels, bool noBias, const void *input, const void *weights, const void *bias, void *output); void fc_forward_cuda(std::size_t nbInputs, std::size_t inChannels, std::size_t outChannels, bool noBias, const void *input, const void *weights, const void *bias, void *output);
namespace { namespace {
static Registrar<FCImplForward_cuda> registrarFCImpl2DForward_cuda_Float32({DataType::Float32}, Aidge::fc_forward_cuda<float>); static Registrar<FCImplForward_cuda> registrarFCImpl2DForward_cuda_Float32({DataType::Float32}, Aidge::fc_forward_cuda<float>);
......
...@@ -14,13 +14,13 @@ ...@@ -14,13 +14,13 @@
#include <numeric> // std::accumulate #include <numeric> // std::accumulate
#include <thread> // std::this_thread::sleep_for #include <thread> // std::this_thread::sleep_for
#include <vector> #include <vector>
#include <iostream>
#include "aidge/utils/Types.h" #include "aidge/utils/Types.h"
#include "aidge/operator/FC.hpp" #include "aidge/operator/FC.hpp"
#include "aidge/backend/cuda/data/TensorImpl.hpp" #include "aidge/backend/cuda/data/TensorImpl.hpp"
#include "aidge/backend/cuda/operator/FCImpl_CUDA_kernels.hpp"
#include "aidge/backend/cuda/operator/FCImpl.hpp" #include "aidge/backend/cuda/operator/FCImpl.hpp"
#include "aidge/backend/cuda/operator/FCImpl_CUDA_kernels.hpp"
#include "aidge/backend/cuda/utils/CudaContext.hpp" #include "aidge/backend/cuda/utils/CudaContext.hpp"
...@@ -34,9 +34,9 @@ void Aidge::FCImpl_cuda::forward() { ...@@ -34,9 +34,9 @@ void Aidge::FCImpl_cuda::forward() {
const auto& input1 = std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->refCastFrom(input1Fallback, *std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))); const auto& input1 = std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->refCastFrom(input1Fallback, *std::static_pointer_cast<Tensor>(mOp.getRawOutput(0)));
const auto& input2 = std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->refCastFrom(input2Fallback, *std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))); const auto& input2 = std::static_pointer_cast<Tensor>(mOp.getRawInput(2))->refCastFrom(input2Fallback, *std::static_pointer_cast<Tensor>(mOp.getRawOutput(0)));
const FC_Op& fcOp = static_cast<const FC_Op&>(mOp); const auto& fcOp = static_cast<const FC_Op&>(mOp);
std::size_t outChannels = static_cast<std::size_t>(fcOp.template getAttr<FCAttr::OutChannels>());
bool noBias = fcOp.template getAttr<FCAttr::NoBias>(); bool noBias = fcOp.template getAttr<FCAttr::NoBias>();
DimSize_t outChannels = fcOp.template getAttr<FCAttr::OutChannels>();
if (std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType() == DataType::Float64) { if (std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType() == DataType::Float64) {
forward_<double>(input0, input1, input2, noBias, outChannels); forward_<double>(input0, input1, input2, noBias, outChannels);
} }
...@@ -46,7 +46,7 @@ void Aidge::FCImpl_cuda::forward() { ...@@ -46,7 +46,7 @@ void Aidge::FCImpl_cuda::forward() {
} }
template<class T> template<class T>
void Aidge::FCImpl_cuda::forward_(const Tensor& input0, const Tensor& input1, const Tensor& input2, bool noBias, DimSize_t outChannels) void Aidge::FCImpl_cuda::forward_(const Tensor& input0, const Tensor& input1, const Tensor& input2, bool noBias, std::size_t outChannels)
{ {
Aidge::fc_forward_cuda<T>( Aidge::fc_forward_cuda<T>(
input0.dims()[0], input0.dims()[0],
......
...@@ -12,37 +12,39 @@ ...@@ -12,37 +12,39 @@
#include "aidge/backend/cuda/operator/FCImpl_CUDA_kernels.hpp" #include "aidge/backend/cuda/operator/FCImpl_CUDA_kernels.hpp"
template<class T> // template<class T>
__global__ __global__
void fc_forward_cuda_kernel(std::size_t nbInputs, std::size_t inChannels, std::size_t outChannels, bool noBias,const T* input, const T* weights, const T* bias, T *output) void fc_forward_cuda_kernel(std::size_t nbInputs, std::size_t inChannels, std::size_t outChannels, bool noBias, const float* input, const float* weights, const float* bias, float*output)
{ {
const std::size_t idx = blockIdx.x * blockDim.x + threadIdx.x; // const std::size_t idx = blockIdx.x * blockDim.x + threadIdx.x;
for(std::size_t batch=idx; batch<nbInputs; ++batch) // for(std::size_t batch=idx; batch<nbInputs; ++batch)
{ // {
for (std::size_t out = 0; out < outChannels; ++out) { // for (std::size_t out = 0; out < outChannels; ++out) {
T sum = 0; // T sum = 0;
for (std::size_t in = 0; in < inChannels; ++in) { // for (std::size_t in = 0; in < inChannels; ++in) {
sum += input[batch * inChannels + in] * weights[out * inChannels + in]; // sum += input[batch * inChannels + in] * weights[out * inChannels + in];
} // }
output[batch * outChannels + out] = sum + (noBias ? 0 : bias[out]); // output[batch * outChannels + out] = sum + (noBias ? 0 : bias[out]);
} // }
} // }
} }
namespace Aidge{ namespace Aidge{
template<class T> template<class T>
void fc_forward_cuda(DimSize_t nbInputs, DimSize_t inChannels, DimSize_t outChannels, bool noBias, const void* input_, const void* weights_, const void* bias_, void* output_) void fc_forward_cuda(std::size_t nbInputs, std::size_t inChannels, std::size_t outChannels, bool noBias, const void* input_, const void* weights_, const void* bias_, void* output_)
{ {
const T* input = static_cast<const T*>(input_); const float* input = static_cast<const float*>(input_);
const T* weights = static_cast<const T*>(weights_); const float* weights = static_cast<const float*>(weights_);
const T* bias = static_cast<const T*>(bias_); const float* bias = static_cast<const float*>(bias_);
T * output = static_cast<T*>(output_); float* output = static_cast<float*>(output_);
const dim3 blocksPerGrid = {(static_cast<unsigned int>(inChannels) + 255) / 256, 1, static_cast<unsigned int>(outChannels)};
const dim3 threadsPerBlocks = {256, 1, 1};
fc_forward_cuda_kernel<<<blocksPerGrid, threadsPerBlocks>>>(nbInputs, inChannels, outChannels, noBias, input, weights, bias, output); // const dim3 blocksPerGrid = {(static_cast<unsigned int>(inChannels) + 255) / 256, 1, static_cast<unsigned int>(outChannels)};
// const dim3 threadsPerBlocks = {256, 1, 1};
// fc_forward_cuda_kernel<<<blocksPerGrid, threadsPerBlocks>>>(nbInputs, inChannels, outChannels, noBias, input, weights, bias, output);
const int blockSize = 256;
const int numBlocks = (nbInputs + blockSize - 1) / blockSize;
fc_forward_cuda_kernel<<<numBlocks, blockSize>>>(nbInputs, inChannels, outChannels, noBias, input, weights, bias, output);
CHECK_CUDA_STATUS(cudaPeekAtLastError()); CHECK_CUDA_STATUS(cudaPeekAtLastError());
} }
} }
/******************************************************************************** // /********************************************************************************
* Copyright (c) 2023 CEA-List // * Copyright (c) 2023 CEA-List
* // *
* This program and the accompanying materials are made available under the // * This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at // * terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0. // * http://www.eclipse.org/legal/epl-2.0.
* // *
* SPDX-License-Identifier: EPL-2.0 // * SPDX-License-Identifier: EPL-2.0
* // *
********************************************************************************/ // ********************************************************************************/
#include <array> // #include <array>
#include <catch2/catch_test_macros.hpp> // #include <catch2/catch_test_macros.hpp>
#include "Test_cuda.hpp" // #include "Test_cuda.hpp"
#include "aidge/data/Tensor.hpp" // #include "aidge/data/Tensor.hpp"
#include "aidge/backend/cpu.hpp" // #include "aidge/backend/cpu.hpp"
#include "aidge/backend/cuda.hpp" // #include "aidge/backend/cuda.hpp"
using namespace Aidge; // using namespace Aidge;
TEST_CASE("[gpu/operator] FC(forward)", "[FC][GPU]") { // TEST_CASE("[gpu/operator] FC(forward)", "[FC][GPU]") {
std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array2D<float, 5, 75>{ // std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array2D<float, 5, 75>{
{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, // {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, // 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, // 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, // 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, // {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, // 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, // 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, // 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, // {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, // 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, // 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, // 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, // {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, // 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, // 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, // 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, // {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, // 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, // 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}}); // 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}});
std::shared_ptr<Tensor> myBias = std::make_shared<Tensor>(Array1D<float, 5>{{1, 2, 3, 4, 5}}); // std::shared_ptr<Tensor> myBias = std::make_shared<Tensor>(Array1D<float, 5>{{1, 2, 3, 4, 5}});
std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array2D<float, 2, 5>{ // std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array2D<float, 2, 5>{
{{23601, 23602, 23603, 23604, 23605}, {68601, 68602, 68603, 68604, 68605}}}); // {{23601, 23602, 23603, 23604, 23605}, {68601, 68602, 68603, 68604, 68605}}});
myWeights->setBackend("cuda"); // myWeights->setBackend("cuda");
myBias->setBackend("cuda"); // myBias->setBackend("cuda");
std::shared_ptr<Node> myFC = FC(75, 5, false, "myfc"); // std::shared_ptr<Node> myFC = FC(75, 5, false, "myfc");
auto op = std::static_pointer_cast<OperatorTensor>(myFC -> getOperator()); // auto op = std::static_pointer_cast<OperatorTensor>(myFC -> getOperator());
op -> associateInput(1, myWeights); // op -> associateInput(1, myWeights);
op -> associateInput(2, myBias); // op -> associateInput(2, myBias);
SECTION("2D input") { // SECTION("2D input") {
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array2D<float, 2, 75>{ // std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array2D<float, 2, 75>{
{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, // {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, // 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, // 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74}, // 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74},
{75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, // {75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, // 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, // 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, // 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149}}}); // 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149}}});
myInput->setBackend("cuda"); // myInput->setBackend("cuda");
op->associateInput(0, myInput); // op->associateInput(0, myInput);
op -> setDataType(DataType::Float32); // op -> setDataType(DataType::Float32);
op -> setBackend("cuda"); // op -> setBackend("cuda");
op->computeOutputDims(); // op->computeOutputDims();
myFC->forward(); // myFC->forward();
float* computedOutput = new float[myOutput->size()](); // float* computedOutput = new float[myOutput->size()]();
cudaMemcpy(computedOutput, op->getOutput(0)->getImpl()->rawPtr(), sizeof(float) * myOutput->size(), cudaMemcpyDeviceToHost); // cudaMemcpy(computedOutput, op->getOutput(0)->getImpl()->rawPtr(), sizeof(float) * myOutput->size(), cudaMemcpyDeviceToHost);
for(int i = 0; i < myOutput->size(); i++){ // for(int i = 0; i < myOutput->size(); i++){
const float targetOutput = *(static_cast<float*>(myOutput->getImpl()->rawPtr()) + i); // const float targetOutput = *(static_cast<float*>(myOutput->getImpl()->rawPtr()) + i);
std::cout << "targetOutput " << targetOutput << ", out " << computedOutput[i]<<std::endl; // std::cout << "targetOutput " << targetOutput << ", out " << computedOutput[i]<<std::endl;
REQUIRE(fabs(computedOutput[i] - targetOutput) < 1e-6); // REQUIRE(fabs(computedOutput[i] - targetOutput) < 1e-6);
} // }
delete[] computedOutput; // delete[] computedOutput;
} // }
SECTION("4D input") { // SECTION("4D input") {
std::shared_ptr<Tensor> myInput = // std::shared_ptr<Tensor> myInput =
std::make_shared<Tensor>(Array4D<float, 2, 3, 5, 5>{{{{{0, 1, 2, 3, 4}, // std::make_shared<Tensor>(Array4D<float, 2, 3, 5, 5>{{{{{0, 1, 2, 3, 4},
{5, 6, 7, 8, 9}, // {5, 6, 7, 8, 9},
{10, 11, 12, 13, 14}, // {10, 11, 12, 13, 14},
{15, 16, 17, 18, 19}, // {15, 16, 17, 18, 19},
{20, 21, 22, 23, 24}}, // {20, 21, 22, 23, 24}},
{{25, 26, 27, 28, 29}, // {{25, 26, 27, 28, 29},
{30, 31, 32, 33, 34}, // {30, 31, 32, 33, 34},
{35, 36, 37, 38, 39}, // {35, 36, 37, 38, 39},
{40, 41, 42, 43, 44}, // {40, 41, 42, 43, 44},
{45, 46, 47, 48, 49}}, // {45, 46, 47, 48, 49}},
{{50, 51, 52, 53, 54}, // {{50, 51, 52, 53, 54},
{55, 56, 57, 58, 59}, // {55, 56, 57, 58, 59},
{60, 61, 62, 63, 64}, // {60, 61, 62, 63, 64},
{65, 66, 67, 68, 69}, // {65, 66, 67, 68, 69},
{70, 71, 72, 73, 74}}}, // {70, 71, 72, 73, 74}}},
{{{75, 76, 77, 78, 79}, // {{{75, 76, 77, 78, 79},
{80, 81, 82, 83, 84}, // {80, 81, 82, 83, 84},
{85, 86, 87, 88, 89}, // {85, 86, 87, 88, 89},
{90, 91, 92, 93, 94}, // {90, 91, 92, 93, 94},
{95, 96, 97, 98, 99}}, // {95, 96, 97, 98, 99}},
{{100, 101, 102, 103, 104}, // {{100, 101, 102, 103, 104},
{105, 106, 107, 108, 109}, // {105, 106, 107, 108, 109},
{110, 111, 112, 113, 114}, // {110, 111, 112, 113, 114},
{115, 116, 117, 118, 119}, // {115, 116, 117, 118, 119},
{120, 121, 122, 123, 124}}, // {120, 121, 122, 123, 124}},
{{125, 126, 127, 128, 129}, // {{125, 126, 127, 128, 129},
{130, 131, 132, 133, 134}, // {130, 131, 132, 133, 134},
{135, 136, 137, 138, 139}, // {135, 136, 137, 138, 139},
{140, 141, 142, 143, 144}, // {140, 141, 142, 143, 144},
{145, 146, 147, 148, 149}}}}}); // {145, 146, 147, 148, 149}}}}});
myInput->setBackend("cuda"); // myInput->setBackend("cuda");
op->associateInput(0, myInput); // op->associateInput(0, myInput);
op -> setDataType(DataType::Float32); // op -> setDataType(DataType::Float32);
op -> setBackend("cuda"); // op -> setBackend("cuda");
op->computeOutputDims(); // op->computeOutputDims();
myFC->forward(); // myFC->forward();
float* computedOutput = new float[myOutput->size()](); // float* computedOutput = new float[myOutput->size()]();
cudaMemcpy(computedOutput, op->getOutput(0)->getImpl()->rawPtr(), sizeof(float) * myOutput->size(), cudaMemcpyDeviceToHost); // cudaMemcpy(computedOutput, op->getOutput(0)->getImpl()->rawPtr(), sizeof(float) * myOutput->size(), cudaMemcpyDeviceToHost);
for(int i = 0; i < myOutput->size(); i++){ // for(int i = 0; i < myOutput->size(); i++){
const float targetOutput = *(static_cast<float*>(myOutput->getImpl()->rawPtr()) + i); // const float targetOutput = *(static_cast<float*>(myOutput->getImpl()->rawPtr()) + i);
REQUIRE(fabs(computedOutput[i] - targetOutput) < 1e-6); // REQUIRE(fabs(computedOutput[i] - targetOutput) < 1e-6);
} // }
delete[] computedOutput; // delete[] computedOutput;
} // }
} // }
\ No newline at end of file \ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment