Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
aidge_backend_cuda
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Houssem ROUIS
aidge_backend_cuda
Commits
2992dcf7
Commit
2992dcf7
authored
1 year ago
by
Houssem ROUIS
Browse files
Options
Downloads
Patches
Plain Diff
add random tests for AvgPooling
parent
ace61c0d
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
unit_tests/Test_AvgPoolingImpl.cpp
+150
-3
150 additions, 3 deletions
unit_tests/Test_AvgPoolingImpl.cpp
with
150 additions
and
3 deletions
unit_tests/Test_AvgPoolingImpl.cpp
+
150
−
3
View file @
2992dcf7
...
...
@@ -13,6 +13,8 @@
#include
<catch2/catch_test_macros.hpp>
#include
<cuda_fp16.h>
#include
<numeric>
// std::accumulate
#include
<random>
// std::random_device, std::mt19937, std::uniform_real_distribution
#include
"Test_cuda.hpp"
...
...
@@ -56,7 +58,7 @@ TEST_CASE("[gpu/operator] AvgPooling(forward)", "[AvgPooling][GPU]") {
}
});
SECTION
(
"Stride"
)
{
std
::
shared_ptr
<
Node
>
myAvgPool
=
AvgPooling
({
2
,
2
},
"my
cdw
"
,
{
2
,
2
});
std
::
shared_ptr
<
Node
>
myAvgPool
=
AvgPooling
({
2
,
2
},
"my
AvgPool
"
,
{
2
,
2
});
auto
op
=
std
::
static_pointer_cast
<
OperatorTensor
>
(
myAvgPool
->
getOperator
());
std
::
shared_ptr
<
Tensor
>
myOutput
=
std
::
make_shared
<
Tensor
>
(
Array4D
<
float
,
2
,
2
,
2
,
2
>
{
...
...
@@ -102,7 +104,7 @@ TEST_CASE("[gpu/operator] AvgPooling(forward)", "[AvgPooling][GPU]") {
}
}
});
std
::
shared_ptr
<
Node
>
myAvgPool
=
AvgPooling
({
3
,
3
},
"my
cdw
"
,
{
3
,
3
});
std
::
shared_ptr
<
Node
>
myAvgPool
=
AvgPooling
({
3
,
3
},
"my
AvgPool
"
,
{
3
,
3
});
auto
op
=
std
::
static_pointer_cast
<
OperatorTensor
>
(
myAvgPool
->
getOperator
());
std
::
shared_ptr
<
Tensor
>
myOutput
=
std
::
make_shared
<
Tensor
>
(
Array4D
<
float
,
1
,
1
,
1
,
1
>
{
...
...
@@ -137,7 +139,7 @@ TEST_CASE("[gpu/operator] AvgPooling(forward)", "[AvgPooling][GPU]") {
});
myInput2
->
setBackend
(
"cuda"
);
std
::
shared_ptr
<
Node
>
myAvgPool
=
AvgPooling
({
3
,
3
},
"mycdw"
,
{
3
,
3
});
std
::
shared_ptr
<
Node
>
myAvgPool
=
AvgPooling
({
3
,
3
},
"my
myAvgPool
cdw"
,
{
3
,
3
});
auto
op
=
std
::
static_pointer_cast
<
OperatorTensor
>
(
myAvgPool
->
getOperator
());
std
::
shared_ptr
<
Tensor
>
myOutput
=
std
::
make_shared
<
Tensor
>
(
Array4D
<
half_float
::
half
,
1
,
1
,
1
,
1
>
{
{{{{(
half_float
::
half
(
0.3745
)
+
half_float
::
half
(
0.9507
)
+
half_float
::
half
(
0.7320
)
+
half_float
::
half
(
0.5987
)
+
half_float
::
half
(
0.1560
)
+
half_float
::
half
(
0.1560
)
+
half_float
::
half
(
0.0581
)
+
half_float
::
half
(
0.8662
)
+
half_float
::
half
(
0.6011
))
/
half_float
::
half
(
9.0
)}}}}
...
...
@@ -158,4 +160,149 @@ TEST_CASE("[gpu/operator] AvgPooling(forward)", "[AvgPooling][GPU]") {
delete
[]
computedOutput
;
}
int
number_of_operation
{
0
};
SECTION
(
"Random Input"
)
{
constexpr
std
::
uint16_t
NBTRIALS
=
10
;
std
::
size_t
kernel
=
2
;
std
::
size_t
stride
=
2
;
// Create a random number generator
std
::
random_device
rd
;
std
::
mt19937
gen
(
rd
());
std
::
uniform_real_distribution
<
float
>
valueDist
(
0.1
f
,
1.1
f
);
// Random float distribution between 0 and 1
std
::
uniform_int_distribution
<
std
::
size_t
>
dimSizeDist
(
std
::
size_t
(
2
),
std
::
size_t
(
10
));
std
::
uniform_int_distribution
<
std
::
size_t
>
nbDimsDist
(
std
::
size_t
(
4
),
std
::
size_t
(
4
));
// Create AveragePooling Operator
std
::
shared_ptr
<
Node
>
myAvgPool
=
AvgPooling
({
kernel
,
kernel
},
"myAvgPool"
,
{
stride
,
stride
});
auto
op
=
std
::
static_pointer_cast
<
OperatorTensor
>
(
myAvgPool
->
getOperator
());
op
->
setDataType
(
DataType
::
Float32
);
op
->
setBackend
(
"cpu"
);
// Create the input Tensor
std
::
shared_ptr
<
Tensor
>
T0
=
std
::
make_shared
<
Tensor
>
();
op
->
associateInput
(
0
,
T0
);
T0
->
setDataType
(
DataType
::
Float32
);
T0
->
setBackend
(
"cpu"
);
// To measure execution time of 'AveragePooling_Op::forward()'
std
::
chrono
::
time_point
<
std
::
chrono
::
system_clock
>
start
;
std
::
chrono
::
time_point
<
std
::
chrono
::
system_clock
>
end
;
std
::
chrono
::
duration
<
double
,
std
::
micro
>
duration
{};
std
::
size_t
number_of_operation
=
0
;
SECTION
(
"OutDims"
)
{
for
(
std
::
uint16_t
trial
=
0
;
trial
<
NBTRIALS
;
++
trial
)
{
// generate a random Tensor
const
std
::
size_t
nbDims
=
nbDimsDist
(
gen
);
std
::
vector
<
std
::
size_t
>
dims
;
for
(
std
::
size_t
i
=
0
;
i
<
nbDims
;
++
i
)
{
dims
.
push_back
(
dimSizeDist
(
gen
));
}
const
std
::
size_t
nb_elements
=
std
::
accumulate
(
dims
.
cbegin
(),
dims
.
cend
(),
std
::
size_t
(
1
),
std
::
multiplies
<
std
::
size_t
>
());
number_of_operation
+=
nb_elements
;
// Fill input tensor
float
*
array0
=
new
float
[
nb_elements
];
for
(
std
::
size_t
i
=
0
;
i
<
nb_elements
;
++
i
)
{
array0
[
i
]
=
valueDist
(
gen
);
}
T0
->
resize
(
dims
);
T0
->
getImpl
()
->
setRawPtr
(
array0
,
nb_elements
);
// Run inference
op
->
computeOutputDims
();
start
=
std
::
chrono
::
system_clock
::
now
();
myAvgPool
->
forward
();
end
=
std
::
chrono
::
system_clock
::
now
();
duration
+=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
microseconds
>
(
end
-
start
);
// Verify output dimensions
REQUIRE
(
op
->
getOutput
(
0
)
->
nbDims
()
==
dims
.
size
());
for
(
size_t
i
=
0
;
i
<
op
->
getOutput
(
0
)
->
nbDims
();
++
i
)
{
if
(
i
==
2
||
i
==
3
)
REQUIRE
(
op
->
getOutput
(
0
)
->
dims
()[
i
]
==
(
1
+
static_cast
<
DimSize_t
>
(
std
::
floor
(
static_cast
<
float
>
(
dims
[
i
]
-
kernel
)
/
static_cast
<
float
>
(
stride
)))));
else
REQUIRE
(
op
->
getOutput
(
0
)
->
dims
()[
i
]
==
dims
[
i
]);
}
delete
[]
array0
;
}
std
::
cout
<<
"number of elements over time spent: "
<<
(
number_of_operation
/
duration
.
count
())
<<
std
::
endl
;
std
::
cout
<<
"total time: "
<<
duration
.
count
()
<<
"μs"
<<
std
::
endl
;
}
SECTION
(
"Values"
)
{
for
(
std
::
uint16_t
trial
=
0
;
trial
<
NBTRIALS
;
++
trial
)
{
// generate a random Tensor
const
std
::
size_t
nbDims
=
nbDimsDist
(
gen
);
std
::
vector
<
std
::
size_t
>
dims
;
for
(
std
::
size_t
i
=
0
;
i
<
nbDims
;
++
i
)
{
dims
.
push_back
(
4
);
}
const
std
::
size_t
nb_elements
=
std
::
accumulate
(
dims
.
cbegin
(),
dims
.
cend
(),
std
::
size_t
(
1
),
std
::
multiplies
<
std
::
size_t
>
());
number_of_operation
+=
nb_elements
;
// Fill input tensor
float
*
array0
=
new
float
[
nb_elements
];
for
(
std
::
size_t
i
=
0
;
i
<
nb_elements
;
++
i
)
{
array0
[
i
]
=
valueDist
(
gen
);
}
T0
->
resize
(
dims
);
T0
->
getImpl
()
->
setRawPtr
(
array0
,
nb_elements
);
// Fill expected output
std
::
vector
<
float
>
result
;
std
::
size_t
rows
=
dims
[
2
],
cols
=
dims
[
3
],
nbMat
=
dims
[
0
]
*
dims
[
1
],
matSize
=
rows
*
cols
;
for
(
size_t
i
=
0
;
i
<
nbMat
;
i
++
)
{
for
(
size_t
r
=
0
;
r
<
rows
;
r
+=
stride
){
for
(
size_t
c
=
0
;
c
<
cols
;
c
+=
stride
){
float
sum
=
0.0
f
;
for
(
size_t
m
=
0
;
m
<
kernel
;
m
++
)
{
for
(
size_t
n
=
0
;
n
<
kernel
;
n
++
)
{
sum
+=
array0
[
i
*
matSize
+
(
r
+
m
)
*
cols
+
c
+
n
];
}
}
result
.
push_back
(
sum
/
(
kernel
*
kernel
));
}
}
}
// energy based model
//adversarial attacks: add noise on image so perturber le modèle
// white box attacks and black box attacks
// langevin sampling
// Run inference
op
->
computeOutputDims
();
start
=
std
::
chrono
::
system_clock
::
now
();
myAvgPool
->
forward
();
end
=
std
::
chrono
::
system_clock
::
now
();
duration
+=
std
::
chrono
::
duration_cast
<
std
::
chrono
::
microseconds
>
(
end
-
start
);
std
::
cout
<<
"---------output"
<<
std
::
endl
;
op
->
getOutput
(
0
)
->
print
();
float
*
computedOutput
=
static_cast
<
float
*>
(
op
->
getOutput
(
0
)
->
getImpl
()
->
rawPtr
());
for
(
size_t
i
=
0
;
i
<
op
->
getOutput
(
0
)
->
size
();
i
++
)
{
std
::
cout
<<
"i "
<<
i
<<
" computed: "
<<
computedOutput
[
i
]
<<
", expected "
<<
result
[
i
]
<<
std
::
endl
;
// REQUIRE(approxEq<float>(computedOutput[i], result[i]));
REQUIRE
(
abs
(
computedOutput
[
i
]
-
result
[
i
])
<
1e-6
);
}
delete
[]
array0
;
}
std
::
cout
<<
"number of elements over time spent: "
<<
(
number_of_operation
/
duration
.
count
())
<<
std
::
endl
;
std
::
cout
<<
"total time: "
<<
duration
.
count
()
<<
"μs"
<<
std
::
endl
;
}
}
}
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment