Skip to content

Scheduler backward

Maxence Naud requested to merge scheduler_backprop into learning

Example of the expected Python user interface

model = load_onnx("model.onnx")

# set backend, datatype, dimensions, data format
model.forward_compile()
# set backend, datatype, dimensions, data format for the gradient
model.backward_compile() # here

# set learning parameters
Myloss = MSE()
myLR = ConstantLR(10^-3)
param = model.parameters()  # here
opt = Adam(param, myLR)

# get data
data = DataBase("path/to/dataset", transformations=[resize, normalize,])
provider = DataProvider(data, batchsize = 8)

# learn
sch = SequentialScheduler(model)
for x1, x2, label in myProvider:
    y = s.forward([x1,x2])
    l = myLoss(y, label)

    opt.zero_grad()  # here
    sch.backward(l)  # here

    opt.update()

Graph manipulation functions:

  • parameters() to extract parameters of type Producer from a GraphView
  • producers() to extract any operator of type Producer from a GraphView

Backward function:

  • backward() function in SequentialScheduler

    The choice was made to start with reversing the SequentialScheduler list.

  • backward() function in OperatorTensors

    • Activations
      • LeakyReLU
      • ReLU
      • Sigmoid
      • Sqrt
    • Arithmetic
      • Add
      • Sub
      • Mul
      • Div
      • Pow
    • Layers
      • FC
      • Conv
  • backward() in GenericOperator

Instanciate gradient

  • instanciateGraphView() to initialize Tensors gradient with the same datatype/backend
  • compile_backward()

Should the computational graph for gradient be independant of the forward graph?

Unit tests for everything

  • unit tests

Other

  • Move forwardDims() member function out of GraphView as it is not about topology but Tensors
  • Move compile() member function out of GraphView for the same reasons?
Edited by Maxence Naud

Merge request reports

Loading