Skip to content
Snippets Groups Projects
Commit f5d51a18 authored by Grégoire Kubler's avatar Grégoire Kubler Committed by Olivier BICHLER
Browse files

feat : operator constant of shape

parent 500e83d5
No related branches found
No related tags found
2 merge requests!212Version 0.3.0,!195Feat operator constantofshape
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CORE_OPERATOR_CONSTANT_OF_SHAPE_H_
#define AIDGE_CORE_OPERATOR_CONSTANT_OF_SHAPE_H_
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <limits>
#include <memory>
#include <string>
#include <vector>
#include "aidge/data/Data.hpp"
#include "aidge/graph/Node.hpp"
#include "aidge/operator/Operator.hpp"
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/OperatorTensor.hpp"
#include "aidge/utils/ErrorHandling.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/StaticAttributes.hpp"
#include "aidge/utils/Types.h"
namespace Aidge {
enum class ConstantOfShapeAttr {
/**
* @brief value to fill the output tensor with.
* Its a scalar tensor holding a value with a fixed datatype
*/
Value,
};
/**
* @brief This operator's purpose is to generate a tensor of shape given via
* input and filled with a given value set via attribute.
*/
class ConstantOfShape_Op
: public OperatorTensor,
public Registrable<ConstantOfShape_Op, std::string,
std::shared_ptr<OperatorImpl>(
const ConstantOfShape_Op &)> {
public:
// name of the type of the operation
static const std::string Type;
private:
using Attributes_ = StaticAttributes<ConstantOfShapeAttr, Tensor>;
template <ConstantOfShapeAttr e>
using attr = typename Attributes_::template attr<e>;
const std::shared_ptr<Attributes_> mAttributes;
public:
/**
* @brief constructor for ConstantOfShape_op
* @param[in] value : a scalar tensor which holds the value that will
* fill the output tensor
*/
ConstantOfShape_Op(const Tensor &value = Tensor(0.f))
: OperatorTensor(Type, {InputCategory::Data}, 1),
mAttributes(std::make_shared<Attributes_>(
attr<ConstantOfShapeAttr::Value>(value))) {}
/**
* @brief Copy-constructor. Copy the operator attributes and its output
* tensor(s), but not its input tensors (the new operator has no input
* associated).
* @param op Operator to copy.
*/
ConstantOfShape_Op(const ConstantOfShape_Op &op)
: OperatorTensor(op), mAttributes(op.mAttributes) {
if (op.mImpl) {
SET_IMPL_MACRO(ConstantOfShape_Op, *this, op.backend());
} else {
mImpl = nullptr;
}
}
/**
* @brief Clone the operator using its copy-constructor.
* @see Operator::MatMul_Op
*/
std::shared_ptr<Operator> clone() const override final {
return std::make_shared<ConstantOfShape_Op>(*this);
}
/**
* @brief Compute dimensions for the output Tensor
* @param allowDataDependency specify if the output shape of this operator
* depends on its inputs.
*/
bool forwardDims(bool allowDataDependency = false) override final;
void setBackend(const std::string &name,
DeviceIdx_t device = 0) override final;
inline std::shared_ptr<Attributes> attributes() const override {
return mAttributes;
}
inline Tensor &value() const noexcept {
return mAttributes->template getAttr<ConstantOfShapeAttr::Value>();
}
static const std::vector<std::string> getInputsName() { return {"input"}; }
static const std::vector<std::string> getOutputsName() {
return {"constant_of_shape"};
}
};
// helper with C-style array instead of std::array for kernel_dims to allow
// automatic template DIM deduction
inline std::shared_ptr<Node> ConstantOfShape(const Tensor value = Tensor(0.f),
const std::string &name = "") {
return std::make_shared<Node>(std::make_shared<ConstantOfShape_Op>(value),
name);
}
} // namespace Aidge
namespace {
template <>
const char *const EnumStrings<Aidge::ConstantOfShapeAttr>::data[] = {"Value"};
}
#endif // AIDGE_CORE_OPERATOR_CONSTANT_OF_SHAPE_H_
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <pybind11/pybind11.h>
#include <string>
#include <vector>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/OperatorTensor.hpp"
#include "aidge/operator/ConstantOfShape.hpp"
namespace py = pybind11;
namespace Aidge {
void init_ConstantOfShape(py::module &m) {
py::class_<ConstantOfShape_Op, std::shared_ptr<ConstantOfShape_Op>, OperatorTensor>(
m, "ConstantOfShapeOp", py::multiple_inheritance())
// Here we bind the methods of the Unsqueeze_Op that wil want to access
.def("get_inputs_name", &ConstantOfShape_Op::getInputsName)
.def("get_outputs_name", &ConstantOfShape_Op::getOutputsName)
.def("value", &ConstantOfShape_Op::value);
// Here we bind the constructor of the ConstantOfShape Node. We add an argument for
// each attribute of the operator (in here we only have 'axes') and the last
// argument is the node's name.
m.def("ConstantOfShape", &ConstantOfShape, py::arg("value") = Tensor(0.f),
py::arg("name") = "",
R"mydelimiter(
Initialize a node containing an constantOfShape operator.
:param value : tensor with a given datatype that contains the value that will fill the output tensor
:type value : :py:class: Tensor
:param name : name of the node.
)mydelimiter");
}
} // namespace Aidge
...@@ -33,6 +33,7 @@ void init_ArgMax(py::module&); ...@@ -33,6 +33,7 @@ void init_ArgMax(py::module&);
void init_AvgPooling(py::module&); void init_AvgPooling(py::module&);
void init_BatchNorm(py::module&); void init_BatchNorm(py::module&);
void init_Concat(py::module&); void init_Concat(py::module&);
void init_ConstantOfShape(py::module&);
void init_Conv(py::module&); void init_Conv(py::module&);
void init_ConvDepthWise(py::module&); void init_ConvDepthWise(py::module&);
void init_Div(py::module&); void init_Div(py::module&);
...@@ -113,6 +114,7 @@ void init_Aidge(py::module& m) { ...@@ -113,6 +114,7 @@ void init_Aidge(py::module& m) {
init_Concat(m); init_Concat(m);
init_Conv(m); init_Conv(m);
init_ConvDepthWise(m); init_ConvDepthWise(m);
init_ConstantOfShape(m);
init_Div(m); init_Div(m);
init_Erf(m); init_Erf(m);
init_FC(m); init_FC(m);
......
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/operator/ConstantOfShape.hpp"
#include <cstdint>
#include <fmt/format.h>
#include <memory>
#include <stdexcept> // std::runtime_error
#include <string>
#include <vector>
#include "aidge/data/Data.hpp"
#include "aidge/data/Tensor.hpp"
#include "aidge/data/half.hpp"
#include "aidge/utils/ErrorHandling.hpp"
#include "aidge/utils/Types.h"
namespace Aidge {
const std::string ConstantOfShape_Op::Type = "ConstantOfShape";
bool ConstantOfShape_Op::forwardDims(bool allowDataDependency) {
if (!inputsAssociated()) {
return false;
}
if (!allowDataDependency) {
Log::warn("{} : unable to forwardDims() because output dims are data "
"dependent on input#0",
type());
return false;
}
AIDGE_ASSERT(getInput(0)->nbDims() == 1,
"{} : Input tensor should have only 1 dimension. {} dimensions"
"received : {}",
__func__, getInput(0)->nbDims(), getInput(0)->dims());
AIDGE_ASSERT(getInput(0)->dataType() == DataType::Int64,
"{} : Input tensor data type should be int64t, received : {}",
__func__, getInput(0)->nbDims(), getInput(0)->dims());
std::vector<DimSize_t> output_dims;
output_dims.reserve(getInput(0)->size());
for (std::size_t i = 0; i < getInput(0)->size(); ++i) {
auto temp = getInput(0)->template get<std::int64_t>(i);
output_dims.push_back(temp);
}
mOutputs[0]->resize(output_dims);
return true;
}
void ConstantOfShape_Op::setBackend(const std::string &name,
Aidge::DeviceIdx_t device) {
SET_IMPL_MACRO(ConstantOfShape_Op, *this, name);
mOutputs[0]->setBackend(name, device);
value().setBackend(name,device);
}
} // namespace Aidge
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <algorithm>
#include <catch2/catch_test_macros.hpp>
#include <catch2/generators/catch_generators_random.hpp>
#include <cstddef> // std::size_t
#include <cstdint>
#include <functional>
#include <memory>
#include <numeric>
#include <random> // std::mt19937, std::uniform_int_distribution
#include <system_error>
#include <vector>
#include "aidge/data/Data.hpp"
#include "aidge/data/Tensor.hpp"
#include "aidge/filler/Filler.hpp"
#include "aidge/operator/ConstantOfShape.hpp"
#include "aidge/operator/OperatorTensor.hpp"
#include "aidge/utils/Types.h"
namespace Aidge {
TEST_CASE("[core/operator] ConstantOfShape_Op(forwardDims)",
"[ConstantOfShape][forwardDims]") {
constexpr std::uint16_t NBTRIALS = 10;
// Create a random number generator
auto random_seed = Catch::Generators::Detail::getSeed;
std::mt19937 gen(random_seed());
std::uniform_int_distribution<std::size_t> input_tensor_dims_dist(1, 10);
std::uniform_int_distribution<std::size_t> input_tensor_value_dist(1, 9);
std::uniform_real_distribution<float> op_value_attr_value_dist(1, 10000);
std::uniform_int_distribution<std::size_t> op_value_attr_type_dist(
0, static_cast<int>(Aidge::DataType::UInt64));
// TENSORS
std::shared_ptr<Tensor> input_T = std::make_shared<Tensor>();
input_T->setDataType(Aidge::DataType::Int64);
input_T->setBackend("cpu");
SECTION("operator test") {
// Create Operator
for (int i = 0; i < NBTRIALS; ++i) {
std::shared_ptr<Node> node =
ConstantOfShape(Tensor(op_value_attr_value_dist(gen)));
auto op =
std::static_pointer_cast<ConstantOfShape_Op>(node->getOperator());
op->associateInput(0, input_T);
std::vector<DimSize_t> input_dims;
input_dims.push_back(input_tensor_dims_dist(gen));
Log::setConsoleLevel(Log::Debug);
int input_nb_elems = input_dims.at(0);
int output_nb_elems = 1;
int64_t *array_in = new int64_t[input_nb_elems];
for (std::size_t i = 0; i < input_nb_elems; ++i) {
std::int64_t val = input_tensor_value_dist(gen);
array_in[i] = val;
output_nb_elems *= val;
}
input_T->resize(input_dims);
op->setInput(0, input_T);
input_T->getImpl()->setRawPtr(array_in, input_nb_elems);
REQUIRE(op->forwardDims(true));
REQUIRE(input_T->size() == op->getOutput(0)->nbDims());
for (DimSize_t i = 0; i < op->getOutput(0)->nbDims(); ++i) {
CHECK(array_in[i] == op->getOutput(0)->dims().at(i));
}
}
}
}
} // namespace Aidge
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment