Skip to content
Snippets Groups Projects
Commit 874cd289 authored by Cyril Moineau's avatar Cyril Moineau
Browse files

[MaxPooling] Add support for ceil_mode parameter.

parent 32227940
No related branches found
No related tags found
1 merge request!36[MaxPooling] Add support for ceil_mode parameter.
Pipeline #33091 failed
......@@ -26,14 +26,15 @@
#include "aidge/utils/Types.h"
namespace Aidge {
enum class MaxPoolingAttr { StrideDims, KernelDims };
enum class MaxPoolingAttr { StrideDims, KernelDims, CeilMode };
template <DimIdx_t DIM>
class MaxPooling_Op : public Operator,
public Registrable<MaxPooling_Op<DIM>, std::string, std::unique_ptr<OperatorImpl>(const MaxPooling_Op<DIM> &)>,
public StaticAttributes<MaxPoolingAttr,
std::array<DimSize_t, DIM>,
std::array<DimSize_t, DIM>> {
std::array<DimSize_t, DIM>,
bool> {
private:
// FIXME: change accessibility
std::shared_ptr<Tensor> mInput = std::make_shared<Tensor>();
......@@ -46,15 +47,18 @@ public:
using Attributes_ = StaticAttributes<MaxPoolingAttr,
std::array<DimSize_t, DIM>,
std::array<DimSize_t, DIM>>;
std::array<DimSize_t, DIM>,
bool>;
template <MaxPoolingAttr e>
using attr = typename Attributes_::template attr<e>;
constexpr MaxPooling_Op(const std::array<DimSize_t, DIM> &kernel_dims,
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1))
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
bool ceil_mode = false)
: Operator(Type),
Attributes_(attr<MaxPoolingAttr::StrideDims>(stride_dims),
attr<MaxPoolingAttr::KernelDims>(kernel_dims)),
attr<MaxPoolingAttr::KernelDims>(kernel_dims),
attr<MaxPoolingAttr::CeilMode>(ceil_mode)),
mOutput(std::make_shared<Tensor>()) {
setDatatype(DataType::Float32);
}
......@@ -92,10 +96,12 @@ public:
void computeOutputDims() override final {
if (!mInput->empty()) {
std::array<DimSize_t, DIM + 2> outputDims = {};
auto roundingFunction = (this->template getAttr<MaxPoolingAttr::CeilMode>()) ?
[](float x){return std::ceil(x);} :
[](float x){return std::floor(x);};
for (std::size_t dim = 0; dim < this->template getAttr<MaxPoolingAttr::KernelDims>().size() ; ++dim) {
outputDims[dim+2] = 1 + static_cast<DimSize_t>(
std::floor(static_cast<float>(mInput->dims()[dim+2] -
roundingFunction(static_cast<float>(mInput->dims()[dim+2] -
this->template getAttr<MaxPoolingAttr::KernelDims>()[dim]) /
static_cast<float>(this->template getAttr<MaxPoolingAttr::StrideDims>()[dim])));
}
......@@ -169,9 +175,10 @@ public:
template <std::array<DimSize_t, 1>::size_type DIM>
inline std::shared_ptr<Node> MaxPooling(const std::array<DimSize_t, DIM> &kernel_dims,
const std::string& name = "",
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1)) {
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
bool ceil_mode=false) {
static_assert(DIM<=MaxDim,"Too many kernel dimensions required by MaxPooling, not supported");
return std::make_shared<Node>(std::make_shared<MaxPooling_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims), name);
return std::make_shared<Node>(std::make_shared<MaxPooling_Op<static_cast<DimIdx_t>(DIM)>>(kernel_dims, stride_dims, ceil_mode), name);
}
// helper with C-style array instead of std::array for kernel_dims to allow automatic template DIM deduction
......@@ -179,15 +186,16 @@ template <DimSize_t DIM>
inline std::shared_ptr<Node> MaxPooling(
DimSize_t const (&kernel_dims)[DIM],
const std::string& name = "",
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1)) {
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
bool ceil_mode = false) {
static_assert(DIM<=MaxDim,"Too many kernel dimensions required by MaxPooling, not supported");
return MaxPooling(to_array(kernel_dims), name, stride_dims);
return MaxPooling(to_array(kernel_dims), name, stride_dims, ceil_mode);
}
} // namespace Aidge
namespace {
template <>
const char *const EnumStrings<Aidge::MaxPoolingAttr>::data[] = {"StrideDims", "KernelDims"};
const char *const EnumStrings<Aidge::MaxPoolingAttr>::data[] = {"StrideDims", "KernelDims", "CeilMode"};
}
#endif /* AIDGE_CORE_OPERATOR_MAXPOOLING_H_ */
......@@ -115,11 +115,12 @@ template <std::array<DimSize_t, 1>::size_type DIM>
inline std::shared_ptr<Node> PaddedMaxPooling(const std::array<DimSize_t, DIM> &kernel_dims,
const std::string& name = "",
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0))
const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0),
bool ceil_mode = false)
{
auto graph = Sequential({
Pad<DIM>(padding_dims, (!name.empty()) ? name + "_pad" : ""),
MaxPooling(kernel_dims, (!name.empty()) ? name + "_maxpooling" : "", stride_dims)
MaxPooling(kernel_dims, (!name.empty()) ? name + "_maxpooling" : "", stride_dims, ceil_mode)
});
return MetaOperator("PaddedMaxPooling", graph, name);
......@@ -131,9 +132,10 @@ inline std::shared_ptr<Node> PaddedMaxPooling(
DimSize_t const (&kernel_dims)[DIM],
const std::string& name = "",
const std::array<DimSize_t, DIM> &stride_dims = create_array<DimSize_t,DIM>(1),
const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0))
const std::array<DimSize_t, 2*DIM> &padding_dims = create_array<DimSize_t,2*DIM>(0),
bool ceil_mode= false)
{
return PaddedMaxPooling(to_array(kernel_dims), name, stride_dims, padding_dims);
return PaddedMaxPooling(to_array(kernel_dims), name, stride_dims, padding_dims, ceil_mode);
}
} // namespace Aidge
......
......@@ -30,22 +30,26 @@ template <DimIdx_t DIM> void declare_MaxPoolingOp(py::module &m) {
m, ("MaxPoolingOp" + std::to_string(DIM) + "D").c_str(),
py::multiple_inheritance())
.def(py::init<const std::array<DimSize_t, DIM> &,
const std::array<DimSize_t, DIM> &>(),
const std::array<DimSize_t, DIM> &,
bool>(),
py::arg("kernel_dims"),
py::arg("stride_dims"))
py::arg("stride_dims"),
py::arg("ceil_mode"))
.def("get_inputs_name", &MaxPooling_Op<DIM>::getInputsName)
.def("get_outputs_name", &MaxPooling_Op<DIM>::getOutputsName);
m.def(("MaxPooling" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims,
const std::string& name,
const std::vector<DimSize_t> &stride_dims) {
const std::vector<DimSize_t> &stride_dims,
bool ceil_mode) {
AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [%ld] does not match DIM [%d]", kernel_dims.size(), DIM);
AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [%ld] does not match DIM [%d]", stride_dims.size(), DIM);
return MaxPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()));
return MaxPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), ceil_mode);
}, py::arg("kernel_dims"),
py::arg("name") = "",
py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1));
py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
py::arg("ceil_mode") = false);
}
......@@ -55,8 +59,5 @@ void init_MaxPooling(py::module &m) {
declare_MaxPoolingOp<2>(m);
declare_MaxPoolingOp<3>(m);
// FIXME:
// m.def("MaxPooling1D", static_cast<NodeAPI(*)(const char*, int, int, int const
// (&)[1])>(&MaxPooling));
}
} // namespace Aidge
......@@ -28,7 +28,7 @@ template <DimIdx_t DIM> void declare_PaddedConvOp(py::module &m) {
m.def(("PaddedConv" + std::to_string(DIM) + "D").c_str(), [](DimSize_t in_channels,
DimSize_t out_channels,
const std::vector<DimSize_t>& kernel_dims,
const std::string& name,
const std::string& name,
const std::vector<DimSize_t> &stride_dims,
const std::vector<DimSize_t> &padding_dims,
const std::vector<DimSize_t> &dilation_dims)
......@@ -50,7 +50,7 @@ template <DimIdx_t DIM> void declare_PaddedConvOp(py::module &m) {
template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) {
m.def(("PaddedConvDepthWise" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims,
const std::string& name,
const std::string& name,
const std::vector<DimSize_t> &stride_dims,
const std::vector<DimSize_t> &padding_dims,
const std::vector<DimSize_t> &dilation_dims)
......@@ -66,12 +66,12 @@ template <DimIdx_t DIM> void declare_PaddedConvDepthWiseOp(py::module &m) {
py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0),
py::arg("dilation_dims") = std::vector<DimSize_t>(DIM,1));
}
template <DimIdx_t DIM> void declare_PaddedAvgPoolingOp(py::module &m) {
m.def(("PaddedAvgPooling" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims,
const std::string& name,
const std::string& name,
const std::vector<DimSize_t> &stride_dims,
const std::vector<DimSize_t> &padding_dims)
{
......@@ -84,25 +84,27 @@ template <DimIdx_t DIM> void declare_PaddedAvgPoolingOp(py::module &m) {
py::arg("name") = "",
py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0));
}
template <DimIdx_t DIM> void declare_PaddedMaxPoolingOp(py::module &m) {
m.def(("PaddedMaxPooling" + std::to_string(DIM) + "D").c_str(), [](const std::vector<DimSize_t>& kernel_dims,
const std::string& name,
const std::string& name,
const std::vector<DimSize_t> &stride_dims,
const std::vector<DimSize_t> &padding_dims)
const std::vector<DimSize_t> &padding_dims,
bool ceil_mode)
{
AIDGE_ASSERT(kernel_dims.size() == DIM, "kernel_dims size [%ld] does not match DIM [%d]", kernel_dims.size(), DIM);
AIDGE_ASSERT(stride_dims.size() == DIM, "stride_dims size [%ld] does not match DIM [%d]", stride_dims.size(), DIM);
AIDGE_ASSERT(padding_dims.size() == 2*DIM, "padding_dims size [%ld] does not match DIM [%d]", padding_dims.size(), 2*DIM);
return PaddedMaxPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()));
return PaddedMaxPooling<DIM>(to_array<DIM>(kernel_dims.begin()), name, to_array<DIM>(stride_dims.begin()), to_array<2*DIM>(padding_dims.begin()), ceil_mode);
}, py::arg("kernel_dims"),
py::arg("name") = "",
py::arg("stride_dims") = std::vector<DimSize_t>(DIM,1),
py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0));
py::arg("padding_dims") = std::vector<DimSize_t>(2*DIM,0),
py::arg("ceil_mode") = false);
}
void init_MetaOperatorDefs(py::module &m) {
......@@ -118,9 +120,7 @@ void init_MetaOperatorDefs(py::module &m) {
declare_PaddedMaxPoolingOp<1>(m);
declare_PaddedMaxPoolingOp<2>(m);
declare_PaddedMaxPoolingOp<3>(m);
// FIXME:
// m.def("Conv1D", static_cast<NodeAPI(*)(const char*, int, int, int const
// (&)[1])>(&Conv));
}
} // namespace Aidge
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment