-
Olivier BICHLER authoredOlivier BICHLER authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
Unfold.cpp 6.48 KiB
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/operator/Unfold.hpp"
#include <cmath> // std::floor
#include <cstddef> // std::size_t
#include <stdexcept> // std::runtime_error
#include <string>
#include <utility> // std::pair
#include <vector>
#include "aidge/data/Tensor.hpp"
#include "aidge/utils/ErrorHandling.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
template <Aidge::DimIdx_t DIM>
void Aidge::Unfold_OpImpl<DIM>::forward() {
const Unfold_Op<DIM>& op = dynamic_cast<const Unfold_Op<DIM>&>(mOp);
const auto kernelDims = op.kernelDims();
const auto dilationDims = op.dilationDims();
const auto strideDims = op.strideDims();
const DimSize_t inHeight = op.getInput(0)->dims()[2];
const DimSize_t inWidth = op.getInput(0)->dims()[3];
const DimSize_t inChannels = op.getInput(0)->dims()[1];
const DimSize_t kernelExtentHeight = op.dilationDims()[0] *
(op.kernelDims()[0] - 1) + 1;
const DimSize_t outHeight = 1 + static_cast<DimSize_t>(
floor(static_cast<float>(inHeight - kernelExtentHeight) /
static_cast<float>(op.strideDims()[0])));
const DimSize_t kernelExtentWidth = op.dilationDims()[1] *
(op.kernelDims()[1] - 1) + 1;
const DimSize_t outWidth = 1 + static_cast<DimSize_t>(
floor(static_cast<float>(inWidth - kernelExtentWidth) /
static_cast<float>(op.strideDims()[1])));
const DimSize_t outChannels = op.getOutput(0)->dims()[1];
for (DimSize_t n = 0; n < op.getOutput(0)->dims()[0]; ++n) {
for (DimSize_t outC = 0; outC < outChannels; ++outC) {
const auto inOffsetW = outC % kernelDims[1];
const auto inOffsetH = (outC / kernelDims[1]) % kernelDims[0];
const auto inC = outC / kernelDims[0] / kernelDims[1];
for (DimSize_t outH = 0; outH < outHeight; ++outH) {
const auto inH = outH * strideDims[0] + inOffsetH * dilationDims[0];
for (DimSize_t outW = 0; outW < outWidth; ++outW) {
const auto inW = outW * strideDims[1] + inOffsetW * dilationDims[1];
op.getOutput(0)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(((n * inChannels + inC) * inHeight + inH) * inWidth + inW), 1,
((n * outChannels + outC) * outHeight + outH) * outWidth + outW);
}
}
}
}
}
template class Aidge::Unfold_OpImpl<2>;
/////////////////////////////////////////////////////////////
template <Aidge::DimIdx_t DIM>
const std::string Aidge::Unfold_Op<DIM>::Type = "Unfold";
template <Aidge::DimIdx_t DIM>
Aidge::Unfold_Op<DIM>::Unfold_Op(const std::array<Aidge::DimSize_t, DIM> &kernelDims,
const std::array<Aidge::DimSize_t, DIM> &strideDims,
const std::array<Aidge::DimSize_t, DIM> &dilationDims)
: OperatorTensor(Type, {InputCategory::Data}, 1),
mAttributes(std::make_shared<Attributes_>(
attr<UnfoldAttr::StrideDims>(strideDims),
attr<UnfoldAttr::DilationDims>(dilationDims),
attr<UnfoldAttr::KernelDims>(kernelDims)))
{
mImpl = std::make_shared<Unfold_OpImpl<DIM>>(*this);
}
template <Aidge::DimIdx_t DIM>
Aidge::Unfold_Op<DIM>::Unfold_Op(const Aidge::Unfold_Op<DIM> &op)
: OperatorTensor(op),
mAttributes(op.mAttributes)
{
if (!op.backend().empty()) {
SET_IMPL_MACRO(Unfold_Op<DIM>, *this, op.backend());
}
else {
mImpl = std::make_shared<Unfold_OpImpl<DIM>>(*this);
}
}
template <Aidge::DimIdx_t DIM>
std::shared_ptr<Aidge::Operator> Aidge::Unfold_Op<DIM>::clone() const {
return std::make_shared<Unfold_Op>(*this);
}
template <Aidge::DimIdx_t DIM>
bool Aidge::Unfold_Op<DIM>::forwardDims(bool /*allowDataDependency*/) {
if (inputsAssociated()) {
const std::array<DimSize_t, DIM + 2> inputDims(getInput(0)->template dims<DIM+2>());
DimSize_t k = 1;
DimSize_t l = 1;
for (std::size_t dim = 0; dim < this->kernelDims().size() ; ++dim) {
const DimSize_t kernelExtent = this->dilationDims()[dim] *
(this->kernelDims()[dim] - 1) + 1;
k *= this->kernelDims()[dim];
l *= 1 + static_cast<DimSize_t>(
floor(static_cast<float>(inputDims[dim+2] - kernelExtent) /
static_cast<float>(this->strideDims()[dim])));
}
mOutputs[0]->resize({inputDims[0], inputDims[1] * k, l});
return true;
}
return false;
}
template <Aidge::DimIdx_t DIM>
void Aidge::Unfold_Op<DIM>::setBackend(const std::string &name, Aidge::DeviceIdx_t device) {
if (Registrar<Unfold_Op<DIM>>::exists({name})){
SET_IMPL_MACRO(Unfold_Op<DIM>, *this, name);
}
else {
mImpl = std::make_shared<Unfold_OpImpl<DIM>>(*this);
}
mOutputs[0]->setBackend(name, device);
}
template <Aidge::DimIdx_t DIM>
std::set<std::string> Aidge::Unfold_Op<DIM>::getAvailableBackends() const {
return Registrar<Unfold_Op<DIM>>::getKeys();
}
template class Aidge::Unfold_Op<2>;
///////////////////////////////////////////////////////////
template <std::array<Aidge::DimSize_t, 1>::size_type DIM>
std::shared_ptr<Aidge::Node> Aidge::Unfold(const std::array<Aidge::DimSize_t, DIM> &kernelDims,
const std::string& name,
const std::array<Aidge::DimSize_t, DIM> &strideDims,
const std::array<Aidge::DimSize_t, DIM> &dilationDims) {
static_assert(DIM<=MaxDim,"Too many kernel dimensions required by Unfold, not supported");
return std::make_shared<Node>(std::make_shared<Unfold_Op<static_cast<DimIdx_t>(DIM)>>(kernelDims, strideDims, dilationDims), name);
}
template std::shared_ptr<Aidge::Node> Aidge::Unfold<2>(const std::array<Aidge::DimSize_t, 2>&,
const std::string&,
const std::array<Aidge::DimSize_t, 2>&,
const std::array<Aidge::DimSize_t, 2>&);