-
Maxence Naud authored
- [Add] attribute() member function of Oeprator. Return nullptr if no attributes - [Fix] Scaling attributes names from camelCase to PascalCase
Maxence Naud authored- [Add] attribute() member function of Oeprator. Return nullptr if no attributes - [Fix] Scaling attributes names from camelCase to PascalCase
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
Conv.cpp 7.18 KiB
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/operator/Conv.hpp"
#include <cmath> // std::floor
#include <cstddef> // std::size_t
#include <stdexcept> // std::runtime_error
#include <string>
#include <utility> // std::pair
#include <vector>
#include "aidge/data/Tensor.hpp"
#include "aidge/utils/ErrorHandling.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
template <Aidge::DimIdx_t DIM>
const std::string Aidge::Conv_Op<DIM>::Type = "Conv";
template <Aidge::DimIdx_t DIM>
Aidge::Conv_Op<DIM>::Conv_Op(const Aidge::Conv_Op<DIM>& op)
: OperatorTensor(op),
mAttributes(op.mAttributes)
{
if (op.mImpl) {
SET_IMPL_MACRO(Conv_Op<DIM>, *this, op.backend());
} else {
mImpl = nullptr;
}
}
template <Aidge::DimIdx_t DIM>
bool Aidge::Conv_Op<DIM>::forwardDims(bool /*allowDataDependency*/) {
// check inputs have been associated
bool associated = true;
for (IOIndex_t i = 0; i < 3; ++i) {
if (!getInput(i)) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #{} should be associated with a Tensor", type(), i);
}
associated &= !(getInput(i)->empty());
}
if (associated) {
// first check weight since it defines inChannels and outChannels
AIDGE_ASSERT((getInput(1)->nbDims() == (DIM+2)),
"Wrong weight Tensor dimension: {} for Conv{}D operator.", getInput(1)->nbDims(), DIM);
// check data
AIDGE_ASSERT((getInput(0)->nbDims() == (DIM+2)) &&
(getInput(0)->template dims<DIM+2>()[1] == inChannels()),
"Wrong input size for Conv operator.");
// check optional bias
if(!mAttributes->template getAttr<ConvAttr::NoBias>())
AIDGE_ASSERT((getInput(2)->nbDims() == (1)) &&
(getInput(2)->template dims<1>()[0] == outChannels()),
"Wrong bias size for Conv operator.");
std::array<DimSize_t, DIM + 2> outputDims{};
const std::array<DimSize_t, DIM + 2> inputDims(getInput(0)->template dims<DIM+2>());
for (std::size_t dim = 0; dim < mAttributes->template getAttr<ConvAttr::KernelDims>().size() ; ++dim) {
const DimSize_t kernelExtent = mAttributes->template getAttr<ConvAttr::DilationDims>()[dim] *
(mAttributes->template getAttr<ConvAttr::KernelDims>()[dim] - 1) +
1;
outputDims[dim+2] = 1 + static_cast<DimSize_t>(
floor(static_cast<float>(inputDims[dim+2] - kernelExtent) /
static_cast<float>(mAttributes->template getAttr<ConvAttr::StrideDims>()[dim])));
}
outputDims[1] = outChannels();
outputDims[0] = inputDims[0];
mOutputs[0]->resize(outputDims);
}
return associated;
}
template <Aidge::DimIdx_t DIM>
std::vector<std::pair<std::vector<Aidge::DimSize_t>, std::vector<Aidge::DimSize_t>>>
Aidge::Conv_Op<DIM>::computeReceptiveField(
const std::vector<Aidge::DimSize_t>& firstEltDims,
const std::vector<Aidge::DimSize_t>& outputDims,
const Aidge::IOIndex_t outputIdx) const
{
if (outputIdx != 0) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "Conv_Op Operator has got only one output Tensor.");
}
if (firstEltDims.size() != outputDims.size()) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "outputDims and firstEltDims should have the size of the output Tensor dimensions.");
}
if ((outputDims.size() == (DIM+2)) && dimsForwarded()) {
// Offset
auto inputIdxDims = firstEltDims; // batch idx is the same
inputIdxDims[1] = 0; // each channel is used so start with the first one
for (DimIdx_t i = 0; i < (DIM+2); ++i) {
if (((outputDims[i] + firstEltDims[i]) > mOutputs[0]->template dims<DIM+2>()[i]) || (outputDims[i] == 0)) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range for dimension {} ({} + {})", static_cast<std::size_t>(i), firstEltDims[i], outputDims[i]);
}
}
// padding is not a parameter of Conv_Op. It is handled in Pad_Op Operator
// Input
// same batch value, every input channel is used
std::vector<DimSize_t> inputDims{outputDims[0], getInput(0)->dims()[1]};
for (DimIdx_t i = 0; i < DIM; ++i) {
inputDims.push_back((outputDims[2+static_cast<std::size_t>(i)] - 1)
* mAttributes->template getAttr<ConvAttr::StrideDims>()[static_cast<std::size_t>(i)]
+ 1
+ (mAttributes->template getAttr<ConvAttr::KernelDims>()[static_cast<std::size_t>(i)] - 1)
* mAttributes->template getAttr<ConvAttr::DilationDims>()[static_cast<std::size_t>(i)]);
inputIdxDims[2+i] *= mAttributes->template getAttr<ConvAttr::StrideDims>()[static_cast<std::size_t>(i)];
}
// Weight
// same output value, every input channel is used
std::vector<DimSize_t> weightDims{outputDims[1], getInput(0)->dims()[1]};
for (std::size_t i = 0; i < DIM; ++i) {
weightDims.push_back(mAttributes->template getAttr<ConvAttr::KernelDims>()[i]);
}
std::vector<DimSize_t> weightIdxDims = std::vector<DimSize_t>(DIM+2, 0);
weightIdxDims[0] = firstEltDims[1];
// Result
std::vector<std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>> res;
res.push_back(std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>(inputIdxDims, inputDims));
res.push_back(std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>(weightIdxDims, weightDims));
// Bias
if (!mAttributes->template getAttr<ConvAttr::NoBias>()){
const std::vector<DimSize_t> biasDims{outputDims[1]}; // the number of output channel
const std::vector<DimSize_t> biasIdxDims{firstEltDims[1]};
res.push_back(std::pair<std::vector<DimSize_t>, std::vector<DimSize_t>>(biasIdxDims, biasDims));
}
return res;
}
AIDGE_THROW_OR_ABORT(std::runtime_error, "Given outputDim out of range or output dim not forwarded yet.");
}
template <Aidge::DimIdx_t DIM>
void Aidge::Conv_Op<DIM>::setBackend(const std::string &name, Aidge::DeviceIdx_t device) {
SET_IMPL_MACRO(Conv_Op<DIM>, *this, name);
mOutputs[0]->setBackend(name, device);
// By default, automatically set backend for weight and bias inputs
if (getInput(1)) {
getInput(1)->setBackend(name, device);
}
else {
Log::notice("Conv_Op::setBackend(): could not set backend for weight input, because input is not connected");
}
if (getInput(2)) {
// Bias is optional
getInput(2)->setBackend(name, device);
}
}
template class Aidge::Conv_Op<2>;