-
Olivier BICHLER authoredOlivier BICHLER authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
ReduceMean.cpp 4.08 KiB
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/operator/ReduceMean.hpp"
#include <algorithm> // std::for_each, std::sort
#include <cstddef> // std::size_t
#include <cstdint> // std::int32_t
#include <memory>
#include <numeric> // For std::iota
#include <stdexcept> // std::runtime_error
#include <string>
#include <vector>
#include "aidge/data/Tensor.hpp"
#include "aidge/utils/ErrorHandling.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
const std::string Aidge::ReduceMean_Op::Type = "ReduceMean";
Aidge::ReduceMean_Op::ReduceMean_Op(const std::vector<std::int32_t>& axes, bool keep_dims, bool noop_with_empty_axes)
: OperatorTensor(Type, {InputCategory::Data}, 1),
mAttributes(std::make_shared<Attributes_>(
attr<ReduceMeanAttr::Axes>(axes),
attr<ReduceMeanAttr::KeepDims>(keep_dims),
attr<ReduceMeanAttr::NoopWithEmptyAxes>(noop_with_empty_axes)))
{}
Aidge::ReduceMean_Op::ReduceMean_Op(const Aidge::ReduceMean_Op& op)
: OperatorTensor(op),
mAttributes(op.mAttributes)
{
if (op.mImpl){
SET_IMPL_MACRO(ReduceMean_Op, *this, op.backend());
} else {
mImpl = nullptr;
}
}
std::shared_ptr<Aidge::Operator> Aidge::ReduceMean_Op::clone() const {
return std::make_shared<ReduceMean_Op>(*this);
}
bool Aidge::ReduceMean_Op::forwardDims(bool /*allowDataDependency*/) {
if (inputsAssociated()) {
// make Axes attribute positive
std::vector<std::int32_t>& axes = mAttributes->template getAttr<ReduceMeanAttr::Axes>();
std::for_each(axes.begin(), axes.end(), [&] (std::int32_t& val) {
if (val < 0)
val+=static_cast<std::int32_t>(getInput(0)->nbDims());
});
std::sort(axes.begin(), axes.end());
// build output dimensions
std::vector<DimSize_t> outDims = getInput(0)->dims();
if (axes.empty())
{
if(mAttributes->template getAttr<ReduceMeanAttr::NoopWithEmptyAxes>()) {
mOutputs[0]->resize(outDims);
return true;
}
// if no axes are provided and NoopWithEmptyAxes is false, reduce on all axes
axes.resize(getInput(0)->nbDims());
std::iota(axes.begin(), axes.end(), 0);
}
if (mAttributes->template getAttr<ReduceMeanAttr::KeepDims>()) {
std::for_each(axes.cbegin(), axes.cend(), [&outDims] (const std::int32_t& val) { outDims[val] = 1; });
}
else {
for (auto it = axes.crbegin(); it != axes.crend(); ++it)
outDims.erase(outDims.begin() + static_cast<std::size_t>(*it));
}
// TODO: change {1} for {} when scalar Tensors are better handled.
mOutputs[0]->resize((outDims.size()>0) ? outDims : std::vector<DimSize_t>({1}));
return true;
}
return false;
}
void Aidge::ReduceMean_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) {
SET_IMPL_MACRO(ReduceMean_Op, *this, name);
mOutputs[0]->setBackend(name, device);
}
std::set<std::string> Aidge::ReduceMean_Op::getAvailableBackends() const {
return Registrar<ReduceMean_Op>::getKeys();
}
Aidge::ReduceMean_Op::~ReduceMean_Op() noexcept = default;
////////////////////////////////////////////
std::shared_ptr<Aidge::Node> Aidge::ReduceMean(const std::vector<std::int32_t> &axes,
bool keep_dims,
bool noop_with_empty_axes,
const std::string& name) {
AIDGE_ASSERT(axes.size()<=MaxDim, "Too many kernel dimensions required by ReduceMean, not supported");
return std::make_shared<Node>(std::make_shared<ReduceMean_Op>(axes, keep_dims, noop_with_empty_axes), name);
}