Newer
Older
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/operator/Slice.hpp"
#include <cassert>
#include <cstddef>
#include <string>
#include <utility>
#include <vector>
#include "aidge/backend/OperatorImpl.hpp"
#include "aidge/data/Data.hpp"
#include "aidge/data/Tensor.hpp"
#include "aidge/utils/ErrorHandling.hpp"
#include "aidge/utils/Types.h"
void Aidge::Slice_OpImpl::forward() {
const Slice_Op& op = dynamic_cast<const Slice_Op&>(mOp);
for(std::size_t i = 0; i < 4; ++i){
if (!op.getInput(i)) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #{} should be associated with a Tensor", op.Type, i);
}
}
AIDGE_ASSERT((op.getInput(1)->size() == op.getInput(2)->size()) && (op.getInput(1)->size() == op.getInput(3)->size()), "start, end and axes arguments should be the same size.");
const std::size_t nbDims = op.getInput(0)->nbDims();
const int* starts = static_cast<const int*>(op.getInput(1)->getImpl()->rawPtr());
const int* ends = static_cast<const int*>(op.getInput(2)->getImpl()->rawPtr());
const int* axes = static_cast<const int*>(op.getInput(3)->getImpl()->rawPtr());
const std::vector<std::size_t>& inputDims = op.getInput(0)->dims();
auto outputDims = op.getInput(0)->dims();
// compute index of the output's first element
// compute output dimension at the same time (may change between two forward calls)
const std::size_t nbAxes = op.getInput(3)->size();
for (std::size_t i = 0; i < nbAxes; ++i) {
// For each slice operation get the params and cast them to size_t
const int axis_ = axes[i];
const int start_ = starts[i];
const int end_ = ends[i];
const std::size_t axis = static_cast<std::size_t>(axis_ >= 0 ? axis_ : axis_ + static_cast<int>(inputDims.size()));
const std::size_t start = start_ >= 0 ? start_ : start_ + inputDims[axis];
const std::size_t end = end_ >= 0 ? end_ : end_ + inputDims[axis];
const std::size_t stridePostAxis = std::accumulate(inputDims.cbegin()+axis+1, inputDims.cend(), std::size_t(1), std::multiplies<std::size_t>());
beginning += start * stridePostAxis;
const std::size_t sliceLength = end - start;
outputDims[axis] = sliceLength;
op.getOutput(0)->resize(outputDims);
// for inputDims = {4,5,5,3} & outputDims = {3,2,2,1}: substractDims = {1,5,5,3}
std::vector<std::size_t> substractedDims = std::vector<std::size_t>(nbDims);
for (std::size_t i = 0; i < nbDims; ++i) {
substractedDims[i] = inputDims[i] - outputDims[i];
// for outputDims = {3,2,2,1}: prodOutputDims = {12,4,2,1}
std::vector<std::size_t> prodOutputDims = std::vector<std::size_t>(nbDims);
std::vector<std::size_t> prodInputDims = std::vector<std::size_t>(nbDims + 1);
prodOutputDims[nbDims - 1] = outputDims[nbDims - 1];
prodInputDims[nbDims - 1] = inputDims[nbDims - 1];
prodInputDims[nbDims] = 1;
for (std::size_t i = 2; i <= nbDims; ++i) {
prodOutputDims[nbDims - i] = prodOutputDims[nbDims - i + 1] * outputDims[nbDims - i];
prodInputDims[nbDims - i] = prodInputDims[nbDims - i + 1] * inputDims[nbDims - i];
}
std::size_t size = 0; // number of elements to copy
for (std::size_t j = 0; j < prodOutputDims[0];) {
for (std::size_t idx = nbDims - 1; idx > 0; --idx) {
if (j % prodOutputDims[idx] == 0) {
i += substractedDims[idx] * prodInputDims[idx + 1];
newChunk = true;
}
if (newChunk) {
op.getOutput(0)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(beginning), size, offset);
beginning = i;
offset += size;
size = 0;
}
}
if (size > 0) {
op.getOutput(0)->getImpl()->copy(op.getInput(0)->getImpl()->rawPtr(beginning), size, offset);
const std::string Aidge::Slice_Op::Type = "Slice";
bool Aidge::Slice_Op::forwardDims(bool /*allowDataDependency*/) {
for(std::size_t i = 0; i < 4; ++i){
if (!getInput(i)) {
AIDGE_THROW_OR_ABORT(std::runtime_error, "{}: input #{} should be associated with a Tensor", type(), i);
}
if((!getInput(0)->empty()) && (!getInput(1)->empty()) && (!getInput(2)->empty()) && (!getInput(3)->empty()))
{
const void* starts = mInputs[1]->getImpl()->rawPtr();
const void* ends = mInputs[2]->getImpl()->rawPtr();
const void* axes = mInputs[3]->getImpl()->rawPtr();
AIDGE_ASSERT((mInputs[1]->dataType() == mInputs[2]->dataType()) && (mInputs[1]->dataType() == mInputs[3]->dataType()), "Slice inputs must have the same dataType.");
DimSize_t nbAxes = mInputs[1]->size();
std::vector<DimSize_t> outDims = getInput(0)->dims();
for (std::size_t i = 0; i < nbAxes; ++i) {
// For each slice operation get the params and cast them to size_t
DimSize_t start, end, axis = 0;
switch (getInput(1)->dataType())
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
case DataType::Float32: {
using ctype = cpptype_t<DataType::Float32>;
const ctype* starts_ = static_cast<const ctype*>(starts);
const ctype* ends_ = static_cast<const ctype*>(ends);
const ctype* axes_ = static_cast<const ctype*>(axes);
axis = axes_[i] >= 0 ? static_cast<DimSize_t>(axes_[i]) : static_cast<DimSize_t>(axes_[i] + static_cast<ctype>(getInput(0)->nbDims()));
start = starts_[i] >= 0 ? static_cast<DimSize_t>(starts_[i]) : static_cast<DimSize_t>(starts_[i] + static_cast<ctype>(getInput(0)->dims()[axis]));
end = ends_[i] >= 0 ? static_cast<DimSize_t>(ends_[i]) : static_cast<DimSize_t>(ends_[i] + static_cast<ctype>(getInput(0)->dims()[ends_[i]]));
} break;
case DataType::Int32: {
using ctype = cpptype_t<DataType::Int32>;
const ctype* starts_ = static_cast<const ctype*>(starts);
const ctype* ends_ = static_cast<const ctype*>(ends);
const ctype* axes_ = static_cast<const ctype*>(axes);
axis = axes_[i] >= 0 ? static_cast<DimSize_t>(axes_[i]) : static_cast<DimSize_t>(axes_[i] + static_cast<ctype>(getInput(0)->nbDims()));
start = starts_[i] >= 0 ? static_cast<DimSize_t>(starts_[i]) : static_cast<DimSize_t>(starts_[i] + static_cast<ctype>(getInput(0)->dims()[axis]));
end = ends_[i] >= 0 ? static_cast<DimSize_t>(ends_[i]) : static_cast<DimSize_t>(ends_[i] + static_cast<ctype>(getInput(0)->dims()[ends_[i]]));
} break;
case DataType::Int64: {
using ctype = cpptype_t<DataType::Int64>;
const ctype* starts_ = static_cast<const ctype*>(starts);
const ctype* ends_ = static_cast<const ctype*>(ends);
const ctype* axes_ = static_cast<const ctype*>(axes);
axis = axes_[i] >= 0 ? static_cast<DimSize_t>(axes_[i]) : static_cast<DimSize_t>(axes_[i] + static_cast<ctype>(getInput(0)->nbDims()));
start = starts_[i] >= 0 ? static_cast<DimSize_t>(starts_[i]) : static_cast<DimSize_t>(starts_[i] + static_cast<ctype>(getInput(0)->dims()[axis]));
end = ends_[i] >= 0 ? static_cast<DimSize_t>(ends_[i]) : static_cast<DimSize_t>(ends_[i] + static_cast<ctype>(getInput(0)->dims()[ends_[i]]));
} break;
case DataType::UInt64: {
using ctype = cpptype_t<DataType::UInt64>;
const ctype* starts_ = static_cast<const ctype*>(starts);
const ctype* ends_ = static_cast<const ctype*>(ends);
const ctype* axes_ = static_cast<const ctype*>(axes);
axis = static_cast<DimSize_t>(axes_[i]);
start = static_cast<DimSize_t>(starts_[i]);
end = static_cast<DimSize_t>(ends_[i]);
} break;
default:
AIDGE_THROW_OR_ABORT(std::runtime_error, "Slice inputs type is not supported yet");
}
const std::size_t sliceLength = end - start;
// Check if slice length is valid
if (sliceLength > getInput(0)->dims()[axis])
{
AIDGE_THROW_OR_ABORT(std::runtime_error, "ROI of Slice operator out of bounds");
}
outDims[axis] = sliceLength;
void Aidge::Slice_Op::setBackend(const std::string& name, Aidge::DeviceIdx_t device) {
if (Registrar<Slice_Op>::exists({name})){
SET_IMPL_MACRO(Slice_Op, *this, name);
}
else {
mImpl = std::make_shared<Slice_OpImpl>(*this);