Newer
Older
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <fmt/format.h>
#include "aidge/scheduler/MemoryManager.hpp"
#include "aidge/utils/ErrorHandling.hpp"
Aidge::MemoryManager::~MemoryManager() noexcept = default;
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
std::shared_ptr<Aidge::MemoryManager::MemorySpace> Aidge::MemoryManager::reserve(
unsigned int size,
const std::set<std::shared_ptr<Node> >& dependencies)
{
const unsigned int offset = onStack(size);
std::shared_ptr<MemorySpace> memSpace
= std::make_shared<MemorySpace>(mClock, offset, size, dependencies);
mMemSpaces.push_back(memSpace);
return memSpace;
}
void Aidge::MemoryManager::expand(
std::shared_ptr<MemorySpace> memSpace,
unsigned int requiredSize)
{
assert(std::find(mMemSpaces.begin(), mMemSpaces.end(), memSpace)
!= mMemSpaces.end());
memSpace->size = std::max(memSpace->size, requiredSize);
// Rebuild the stack from the beginning, taking into account the new size.
// Everything else stay the same.
mMemStack.clear();
for (Clock_T clock = 0; clock <= mClock; ++clock) {
for (std::vector<std::shared_ptr<MemorySpace> >::iterator
it = mMemSpaces.begin(), itEnd = mMemSpaces.end(); it != itEnd;
++it)
{
if ((*it)->allocated == clock)
(*it)->offset = onStack((*it)->size);
}
// MemorySpace released at clock are still valid until the next tick;
// make sure offStack() only append after all onStack() are done.
for (std::vector<std::shared_ptr<MemorySpace> >::iterator
it = mMemSpaces.begin(), itEnd = mMemSpaces.end(); it != itEnd;
++it)
{
if ((*it)->released == clock && (*it)->dependencies.empty())
offStack((*it)->offset);
}
}
}
Aidge::MemoryManager::MemoryPlane Aidge::MemoryManager::allocate(
unsigned int size,
const std::set<std::shared_ptr<Node> >& dependencies,
unsigned int stride,
unsigned int length,
unsigned int count)
{
const unsigned int fullSize = std::max(size, stride) * length * count;
return MemoryPlane(reserve(fullSize, dependencies),
mClock, 0, size, stride, length, count);
}
unsigned int Aidge::MemoryManager::allocate(
const std::shared_ptr<Node>& node,
unsigned int size,
const std::set<std::shared_ptr<Node> >& dependencies,
unsigned int stride,
unsigned int length,
unsigned int count)
{
std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >::iterator it;
std::tie(it, std::ignore) = mMemPlanes.insert(std::make_pair(node,
std::vector<MemoryPlane>()));
(*it).second.push_back(allocate(size, dependencies, stride, length, count));
return ((*it).second.size() - 1);
}
bool Aidge::MemoryManager::isWrapAround(
std::shared_ptr<MemorySpace> memSpace,
unsigned int offset,
unsigned int size,
unsigned int stride,
unsigned int length,
unsigned int count) const
{
const unsigned int fullSize = std::max(size, stride) * length * count;
return (offset + fullSize > memSpace->size);
}
Aidge::MemoryManager::MemoryPlane Aidge::MemoryManager::reallocate(
std::shared_ptr<MemorySpace> memSpace,
unsigned int offset,
unsigned int size,
bool wrapAround,
unsigned int extraSize,
const std::set<std::shared_ptr<Node> >& additionalDependencies,
unsigned int stride,
unsigned int length,
unsigned int count)
{
const unsigned int fullSize = std::max(size, stride) * length * count;
unsigned int requiredSize = offset + fullSize;
if (wrapAround) {
requiredSize = fullSize + extraSize;
if (count > 1) {
// (requiredSize - offset) must be a multiple of (stride * length)
requiredSize = offset
+ std::ceil((requiredSize - offset)
/ static_cast<double>(std::max(size, stride) * length))
* (std::max(size, stride) * length);
}
else if (length > 1) {
// (requiredSize - offset) must be a multiple of stride
requiredSize = offset
+ std::ceil((requiredSize - offset)
/ static_cast<double>(std::max(size, stride)))
* std::max(size, stride);
}
}
if (requiredSize > memSpace->size || memSpace->released >= 0) {
// Expand in size and/or duration.
// If memSpace was already released, put it back on the stack
memSpace->released = -1;
expand(memSpace, requiredSize);
}
memSpace->dependencies.insert(additionalDependencies.begin(),
additionalDependencies.end());
return MemoryPlane(memSpace, mClock, offset, size, stride, length, count);
}
Aidge::MemoryManager::MemoryPlane Aidge::MemoryManager::reallocate(
const MemoryPlane& memPlane,
unsigned int extraOffset,
unsigned int size,
bool wrapAround,
unsigned int extraSize,
const std::set<std::shared_ptr<Node> >& additionalDependencies,
unsigned int stride,
unsigned int length,
unsigned int count)
{
const unsigned int initialOffset = memPlane.getFinalOffset()
- memPlane.memSpace->offset + extraOffset;
const unsigned int fullSize = std::max(size, stride) * length * count;
unsigned int requiredSize = initialOffset + fullSize;
if (wrapAround) {
requiredSize = fullSize + extraSize;
if (count > 1) {
// (requiredSize - offset) must be a multiple of (stride * length)
requiredSize = initialOffset
+ std::ceil((requiredSize - initialOffset)
/ static_cast<double>(std::max(size, stride) * length))
* (std::max(size, stride) * length);
}
else if (length > 1) {
// (requiredSize - offset) must be a multiple of stride
requiredSize = initialOffset
+ std::ceil((requiredSize - initialOffset)
/ static_cast<double>(std::max(size, stride)))
* std::max(size, stride);
}
// Make sure that the intended margin with previous memPlane will be
// respected, as it may actually be lower because of the floor()
// in the memPlane getLimit() function.
if (memPlane.count > 1) {
requiredSize = memPlane.offset
+ std::ceil((requiredSize - memPlane.offset)
/ static_cast<double>(memPlane.stride * memPlane.length))
* (memPlane.stride * memPlane.length);
}
else if (memPlane.length > 1) {
requiredSize = memPlane.offset
+ std::ceil((requiredSize - memPlane.offset)
/ static_cast<double>(memPlane.stride))
* memPlane.stride;
}
}
if (requiredSize > memPlane.memSpace->size
|| memPlane.memSpace->released >= 0)
{
// Expand in size and/or duration.
// If memSpace was already released, put it back on the stack
memPlane.memSpace->released = -1;
expand(memPlane.memSpace, requiredSize);
}
memPlane.memSpace->dependencies.insert(
additionalDependencies.begin(),
additionalDependencies.end());
const unsigned int finalOffset = memPlane.getFinalOffset()
- memPlane.memSpace->offset + extraOffset;
return MemoryPlane(memPlane.memSpace, mClock,
finalOffset, size, stride, length, count);
}
unsigned int Aidge::MemoryManager::reallocate(
const MemoryPlane& memPlane,
const std::shared_ptr<Node>& node,
unsigned int extraOffset,
unsigned int size,
bool wrapAround,
unsigned int extraSize,
const std::set<std::shared_ptr<Node> >& additionalDependencies,
unsigned int stride,
unsigned int length,
unsigned int count)
{
std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >::iterator it;
std::tie(it, std::ignore) = mMemPlanes.insert(std::make_pair(node,
std::vector<MemoryPlane>()));
(*it).second.push_back(reallocate(memPlane, extraOffset, size, wrapAround,
extraSize, additionalDependencies,
stride, length, count));
return ((*it).second.size() - 1);
}
unsigned int Aidge::MemoryManager::reallocate(
std::shared_ptr<MemorySpace> memSpace,
const std::shared_ptr<Node>& node,
unsigned int offset,
unsigned int size,
bool wrapAround,
unsigned int extraSize,
const std::set<std::shared_ptr<Node> >& additionalDependencies,
unsigned int stride,
unsigned int length,
unsigned int count)
{
std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >::iterator it;
std::tie(it, std::ignore) = mMemPlanes.insert(std::make_pair(node,
std::vector<MemoryPlane>()));
(*it).second.push_back(reallocate(memSpace, offset, size, wrapAround,
extraSize, additionalDependencies,
stride, length, count));
return ((*it).second.size() - 1);
}
unsigned int Aidge::MemoryManager::release(std::shared_ptr<MemorySpace> memSpace)
{
if (memSpace->released == -1) {
memSpace->released = mClock;
if (memSpace->dependencies.empty())
return offStack(memSpace->offset);
}
return 0;
}
unsigned int Aidge::MemoryManager::release(const std::shared_ptr<Node>& node)
{
const std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >
::iterator it = mMemPlanes.find(node);
if (it == mMemPlanes.end()) {
fmt::print("Warning: release(): there is no allocated memory for node {}\n", node->name());
return 0;
}
unsigned int releasedMemSize = 0;
for (std::vector<MemoryPlane>::iterator itPlanes = (*it).second.begin(),
itPlanesEnd = (*it).second.end(); itPlanes != itPlanesEnd; ++itPlanes)
{
releasedMemSize += release((*itPlanes).memSpace);
}
// Remove dependencies
releasedMemSize += releaseDependencies(node);
return releasedMemSize;
}
unsigned int Aidge::MemoryManager::releaseDependencies(
const std::shared_ptr<Node>& node)
{
unsigned int releasedMemSize = 0;
for (std::vector<std::shared_ptr<MemorySpace> >::iterator
it = mMemSpaces.begin(), itEnd = mMemSpaces.end(); it != itEnd;
++it)
{
if (!(*it)->dependencies.empty()) {
(*it)->dependencies.erase(node);
if ((*it)->released <= mClock
&& (*it)->dependencies.empty())
{
(*it)->released = mClock;
releasedMemSize += offStack((*it)->offset);
}
}
}
return releasedMemSize;
}
bool Aidge::MemoryManager::MaxLifetimeMinSizeFirst::operator()(
const std::shared_ptr<MemorySpace>& p0,
const std::shared_ptr<MemorySpace>& p1)
{
const Clock_T lifetime0
= ((p0->released >= 0) ? p0->released : maxLifetime) - p0->allocated;
const Clock_T lifetime1
= ((p1->released >= 0) ? p1->released : maxLifetime) - p1->allocated;
return (lifetime0 > lifetime1
|| (lifetime0 == lifetime1 && p0->size < p1->size));
}
bool Aidge::MemoryManager::MaxLifetimeMaxSizeFirst::operator()(
const std::shared_ptr<MemorySpace>& p0,
const std::shared_ptr<MemorySpace>& p1)
{
const Clock_T lifetime0
= ((p0->released >= 0) ? p0->released : maxLifetime) - p0->allocated;
const Clock_T lifetime1
= ((p1->released >= 0) ? p1->released : maxLifetime) - p1->allocated;
return (lifetime0 > lifetime1
|| (lifetime0 == lifetime1 && p0->size > p1->size));
}
bool Aidge::MemoryManager::MaxHoleMaxLifetimeFirst::operator()(
const std::shared_ptr<MemorySpace>& p0,
const std::shared_ptr<MemorySpace>& p1)
{
const Clock_T lifetime0
= ((p0->released >= 0) ? p0->released : maxLifetime) - p0->allocated;
const Clock_T lifetime1
= ((p1->released >= 0) ? p1->released : maxLifetime) - p1->allocated;
const std::pair<Clock_T, unsigned int> maxHole0 = inst->getMaxHole(p0);
const std::pair<Clock_T, unsigned int> maxHole1 = inst->getMaxHole(p1);
return (maxHole0.second > maxHole1.second
|| (maxHole0.second == maxHole1.second && lifetime0 > lifetime1));
}
void Aidge::MemoryManager::optimize(OptimizeStrategy strategy) {
if (strategy == None)
return;
const unsigned int maxLifetime = getMaxLifetime();
if (strategy == OptimizeMaxLifetimeMinSizeFirst) {
std::stable_sort(mMemSpaces.begin(), mMemSpaces.end(),
MemoryManager::MaxLifetimeMinSizeFirst(maxLifetime));
}
else if (strategy == OptimizeMaxLifetimeMaxSizeFirst) {
std::stable_sort(mMemSpaces.begin(), mMemSpaces.end(),
MemoryManager::MaxLifetimeMaxSizeFirst(maxLifetime));
}
else if (strategy == OptimizeMaxHoleMaxLifetimeFirst) {
std::stable_sort(mMemSpaces.begin(), mMemSpaces.end(),
MemoryManager::MaxHoleMaxLifetimeFirst(maxLifetime, this));
}
std::vector<std::map<unsigned int, unsigned int> > stacks(maxLifetime + 1,
std::map<unsigned int, unsigned int>());
for (std::vector<std::shared_ptr<MemorySpace> >::const_iterator
it = mMemSpaces.begin(), itEnd = mMemSpaces.end(); it != itEnd; ++it)
{
const Clock_T maxT = ((*it)->released >= 0
&& (*it)->dependencies.empty())
? (*it)->released : maxLifetime;
// Merge stacks over memSpace lifetime
std::map<unsigned int, unsigned int> mergedStacks;
for (Clock_T t = (*it)->allocated; t <= maxT; ++t) {
for (std::map<unsigned int, unsigned int>::iterator itMem
= stacks[t].begin(), itMemEnd = stacks[t].end();
itMem != itMemEnd; ++itMem)
{
bool newInsert;
std::map<unsigned int, unsigned int>::iterator itMergedMem;
std::tie(itMergedMem, newInsert) = mergedStacks.insert(
std::make_pair((*itMem).first, (*itMem).second));
if (!newInsert) {
(*itMergedMem).second = std::max((*itMergedMem).second,
(*itMem).second);
}
}
}
std::map<unsigned int, unsigned int> mergedStack;
if (!mergedStacks.empty()) {
std::map<unsigned int, unsigned int>::iterator itMem
= mergedStacks.begin();
mergedStack.insert(*itMem);
++itMem;
while (itMem != mergedStacks.end()) {
std::map<unsigned int, unsigned int>::reverse_iterator
itMergedMem = mergedStack.rbegin();
const unsigned int nextOffset = (*itMergedMem).first
+ (*itMergedMem).second;
if ((*itMem).first <= nextOffset) {
(*itMergedMem).second
= std::max((*itMem).first + (*itMem).second, nextOffset)
- (*itMergedMem).first;
}
else
mergedStack.insert(*itMem);
++itMem;
}
}
// Allocate in merged stack
unsigned int offset = 0;
std::map<unsigned int, unsigned int>::iterator itMem
= mergedStack.begin();
while (true) {
if (itMem == mergedStack.end()
|| (*itMem).first - offset >= (*it)->size)
{
mergedStack.insert(std::make_pair(offset, (*it)->size));
break;
}
else {
offset = (*itMem).first + (*itMem).second;
++itMem;
}
}
(*it)->offset = offset;
for (Clock_T t = (*it)->allocated; t <= maxT; ++t) {
const std::map<unsigned int, unsigned int> stack
= getStack((*it), t);
stacks[t].insert(stack.begin(), stack.end());
//stacks[t].insert(std::make_pair(offset, (*it)->size));
}
}
}
unsigned int Aidge::MemoryManager::getOffset(const std::shared_ptr<Node>& node,
unsigned int plane) const
{
const std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >
::const_iterator it = mMemPlanes.find(node);
if (it == mMemPlanes.end()) {
AIDGE_THROW_OR_ABORT(std::runtime_error,
"getOffset(): no memory allocated for node name {}", node->name());
}
if (plane >= (*it).second.size()) {
AIDGE_THROW_OR_ABORT(std::runtime_error,
"getOffset(): plane out of range for node name {}", node->name());
}
return ((*it).second[plane].memSpace->offset + (*it).second[plane].offset);
}
unsigned int Aidge::MemoryManager::getSize(const std::shared_ptr<Node>& node,
unsigned int plane) const
{
const std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >
::const_iterator it = mMemPlanes.find(node);
if (it == mMemPlanes.end()) {
AIDGE_THROW_OR_ABORT(std::runtime_error,
"getSize(): no memory allocated for node name {}", node->name());
}
if (plane >= (*it).second.size()) {
AIDGE_THROW_OR_ABORT(std::runtime_error,
"getSize(): plane out of range for node name {}", node->name());
}
return (*it).second[plane].getSize();
}
unsigned int Aidge::MemoryManager::getSize(const std::shared_ptr<Node>& node)
const
{
const std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >
::const_iterator it = mMemPlanes.find(node);
if (it == mMemPlanes.end()) {
AIDGE_THROW_OR_ABORT(std::runtime_error,
"getSize(): no memory allocated for node name {}", node->name());
}
unsigned int size = 0;
for (std::vector<MemoryPlane>::const_iterator itPlanes
= (*it).second.begin(), itPlanesEnd = (*it).second.end();
itPlanes != itPlanesEnd; ++itPlanes)
{
size += (*itPlanes).getSize();
}
return size;
}
unsigned int Aidge::MemoryManager::getNbPlanes(const std::shared_ptr<Node>& node)
const
{
const std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >
::const_iterator it = mMemPlanes.find(node);
return (it == mMemPlanes.end()) ? 0 : (*it).second.size();
}
unsigned int Aidge::MemoryManager::getPeakUsage() const {
unsigned int peakUsage = 0;
for (std::vector<std::shared_ptr<MemorySpace> >::const_iterator
it = mMemSpaces.begin(), itEnd = mMemSpaces.end(); it != itEnd; ++it)
{
peakUsage = std::max(peakUsage,
(*it)->offset + (*it)->size);
}
return peakUsage;
}
Aidge::MemoryManager::Clock_T Aidge::MemoryManager::getMaxLifetime() const {
Clock_T maxLifetime = 0;
for (std::vector<std::shared_ptr<MemorySpace> >::const_iterator
it = mMemSpaces.begin(), itEnd = mMemSpaces.end(); it != itEnd; ++it)
{
maxLifetime = std::max(maxLifetime,
std::max((*it)->allocated, (*it)->released));
}
return maxLifetime;
}
const std::vector<Aidge::MemoryManager::MemoryPlane>&
Aidge::MemoryManager::getPlanes(const std::shared_ptr<Node>& node) const
{
const std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >
::const_iterator it = mMemPlanes.find(node);
if (it == mMemPlanes.end()) {
AIDGE_THROW_OR_ABORT(std::runtime_error,
"getSize(): no memory allocated for node name {}", node->name());
}
return (*it).second;
}
Aidge::MemoryManager::MemMap_T
Aidge::MemoryManager::getPlanes(std::shared_ptr<MemorySpace> memSpace)
const
{
MemMap_T planes;
for (MemMap_T::const_iterator itNode = mMemPlanes.begin(),
itNodeEnd = mMemPlanes.end(); itNode != itNodeEnd; ++itNode)
{
for (std::vector<MemoryPlane>::const_iterator itPlane
= (*itNode).second.begin(), itPlaneEnd = (*itNode).second.end();
itPlane != itPlaneEnd; ++itPlane)
{
if ((*itPlane).memSpace == memSpace) {
std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >
::iterator it;
std::tie(it, std::ignore) = planes.insert(
std::make_pair((*itNode).first,
std::vector<MemoryPlane>()));
(*it).second.push_back((*itPlane));
}
}
}
return planes;
}
unsigned int Aidge::MemoryManager::getNbPlanes(
std::shared_ptr<MemorySpace> memSpace) const
{
unsigned int count = 0;
for (std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >
::const_iterator itNode = mMemPlanes.begin(),
itNodeEnd = mMemPlanes.end(); itNode != itNodeEnd; ++itNode)
{
for (std::vector<MemoryPlane>::const_iterator itPlane
= (*itNode).second.begin(), itPlaneEnd = (*itNode).second.end();
itPlane != itPlaneEnd; ++itPlane)
{
if ((*itPlane).memSpace == memSpace)
++count;
}
}
return count;
}
void Aidge::MemoryManager::tick()
{
++mClock;
}
void Aidge::MemoryManager::log(const std::string& fileName) const
{
auto memData = std::unique_ptr<FILE, decltype(&std::fclose)>(std::fopen(fileName.c_str(), "w"), &std::fclose);
if (!memData) {
AIDGE_THROW_OR_ABORT(std::runtime_error,
"Could not create memory layout log file: {}", fileName);
}
auto gnuplot = std::unique_ptr<FILE, decltype(&std::fclose)>(std::fopen((fileName + "_plot.gnu").c_str(), "w"), &std::fclose);
if (!gnuplot) {
AIDGE_THROW_OR_ABORT(std::runtime_error,
"Could not create memory layout log file: {}", (fileName + "_plot.gnu"));
}
const Clock_T maxLifetime = getMaxLifetime();
const unsigned int peakUsage = getPeakUsage();
fmt::print(gnuplot.get(), "#!/usr/bin/gnuplot\n");
fmt::print(gnuplot.get(), "set term pngcairo size 1280,768 noenhanced\n");
fmt::print(gnuplot.get(), "set output \"{}\"\n", fileName + "_plot.png");
fmt::print(gnuplot.get(), "set xrange [{}:{}]\n", 0, maxLifetime + 1);
fmt::print(gnuplot.get(), "set yrange [{}:{}]\n", 0, 1.05 * (peakUsage / 1024.0));
fmt::print(gnuplot.get(), "set xlabel \"Time\"\n");
fmt::print(gnuplot.get(), "set ylabel \"Memory usage (KWords)\"\n");
fmt::print(gnuplot.get(), "set grid\n");
fmt::print(gnuplot.get(), "set xtics 1\n");
fmt::print(gnuplot.get(), "unset key\n");
fmt::print(gnuplot.get(), "set palette rgbformulae 30,31,32\n");
fmt::print(gnuplot.get(), "unset colorbox\n");
fmt::print(gnuplot.get(), "N={}\n", mMemPlanes.size() + 1);
unsigned int objectId = 1;
unsigned int labelId = 1;
for (std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >
::const_iterator it = mMemPlanes.begin(), itEnd = mMemPlanes.end();
it != itEnd; ++it)
{
const std::string name = (*it).first->name();
fmt::print(memData.get(), "{}\n", name);
double minX = -1;
unsigned int maxY = 0;
for (std::vector<MemoryPlane>::const_iterator itPlanes
= (*it).second.begin(), itPlanesBegin = (*it).second.begin(),
itPlanesEnd = (*it).second.end(); itPlanes != itPlanesEnd;
++itPlanes)
{
const unsigned int contiguousOffset
= (*itPlanes).getContiguousOffset();
const unsigned int contiguousSize = (*itPlanes).getContiguousSize();
const unsigned int wrappedOffset = (*itPlanes).getWrappedOffset();
const unsigned int wrappedSize = (*itPlanes).getWrappedSize();
const Clock_T allocated = (*itPlanes).allocated;
const Clock_T released = (*itPlanes).memSpace->released;
const bool isReleased = (released >= 0
&& (*itPlanes).memSpace->dependencies.empty());
fmt::print(memData.get(), " {} {} ({:#08x}U) -> {} ({:#08x}U)",
(itPlanes - itPlanesBegin), contiguousOffset, contiguousOffset,
(contiguousOffset + contiguousSize), (contiguousOffset + contiguousSize));
if (wrappedSize > 0) {
fmt::print(memData.get(), " + {} ({:#08x}U) -> {} ({:#08x}U)",
wrappedOffset, wrappedOffset,
(wrappedOffset + wrappedSize), (wrappedOffset + wrappedSize));
}
fmt::print(memData.get(), " [{}] @ {}", (*itPlanes).getSize(), allocated);
if (isReleased) {
fmt::print(memData.get(), " to {}", released);
}
fmt::print(memData.get(), "\n");
// Gnuplot
const double startX = allocated;
if (startX < minX || minX < 0) {
minX = startX;
maxY = contiguousOffset + contiguousSize;
}
if ((*itPlanes).size != (*itPlanes).stride) {
for (unsigned int offset = contiguousOffset;
offset < contiguousOffset + contiguousSize;
offset += (*itPlanes).stride)
{
fmt::print(gnuplot.get(), "set object {} rectangle from {},{} to {},{} fc palette frac ({} * 1./N)\n",
(allocated * 100 + objectId), startX, (offset / 1024.0),
(((isReleased) ? released : maxLifetime) + 1),
(std::min((offset + (*itPlanes).size),
contiguousOffset + contiguousSize) / 1024.0),
labelId);
++objectId;
}
}
else {
fmt::print(gnuplot.get(), "set object {} rectangle from {},{} to {},{} fc palette frac ({} * 1./N)\n",
(allocated * 100 + objectId), startX, (contiguousOffset / 1024.0),
(((isReleased) ? released : maxLifetime) + 1),
((contiguousOffset + contiguousSize) / 1024.0),
labelId);
++objectId;
}
if (wrappedSize > 0) {
fmt::print(gnuplot.get(), "set object {} rectangle from {},{} to {},{} fc palette frac ({} * 1./N)\n",
(allocated * 100 + objectId), startX, (wrappedOffset / 1024.0),
(((isReleased) ? released : maxLifetime) + 1),
((wrappedOffset + contiguousSize) / 1024.0),
labelId);
++objectId;
fmt::print(gnuplot.get(), "set arrow from {},{} to {},{} nohead\n",
startX, (contiguousOffset / 1024.0),
(startX + 0.1), (contiguousOffset / 1024.0));
fmt::print(gnuplot.get(), "set arrow from {},{} to {},{} nohead\n",
(startX + 0.05), ((contiguousOffset + contiguousSize) / 1024.0),
(startX + 0.05), (wrappedOffset / 1024.0));
}
}
fmt::print(gnuplot.get(), "set label {} '{}' at {},{} rotate by 30 font \",8\" offset char 0.5,0.5\n",
labelId, name, minX, (maxY / 1024.0));
++labelId;
fmt::print(memData.get(), "\n");
}
fmt::print(gnuplot.get(), "set arrow from 0,{} to {},{} nohead lc rgb \"red\"\n",
(peakUsage / 1024.0), (maxLifetime + 1),
(peakUsage / 1024.0));
fmt::print(gnuplot.get(), "set label {} 'Peak usage = {} KWords' at 0,{} textcolor rgb \"red\" offset char 0.5,0.5\n",
labelId, (peakUsage / 1024.0), (peakUsage / 1024.0));
fmt::print(gnuplot.get(), "plot 0\n");
}
unsigned int Aidge::MemoryManager::onStack(unsigned int size)
{
unsigned int offset = 0;
std::map<unsigned int, unsigned int>::iterator itMem = mMemStack.begin();
while (true) {
if (itMem == mMemStack.end()
|| (*itMem).first - offset >= size)
{
mMemStack.insert(std::make_pair(offset, size));
break;
}
else {
offset = (*itMem).first + (*itMem).second;
++itMem;
}
}
return offset;
}
unsigned int Aidge::MemoryManager::offStack(unsigned int offset)
{
std::map<unsigned int, unsigned int>::iterator itMem
= mMemStack.find(offset);
if (itMem == mMemStack.end()) {
AIDGE_THROW_OR_ABORT(std::runtime_error,
"offStack(): offset not found in stack");
}
else {
const unsigned int size = (*itMem).second;
mMemStack.erase(offset);
return size;
}
}
std::map<unsigned int, unsigned int> Aidge::MemoryManager::getStack(
std::shared_ptr<MemorySpace> memSpace,
Clock_T clock) const
{
// Find all planes associated to memSpace and index them by their allocated
// value in a map
std::map<Clock_T, std::vector<MemoryPlane> > planes;
for (std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >
::const_iterator itNode = mMemPlanes.begin(),
itNodeEnd = mMemPlanes.end(); itNode != itNodeEnd; ++itNode)
{
for (std::vector<MemoryPlane>::const_iterator itPlane
= (*itNode).second.begin(), itPlaneEnd = (*itNode).second.end();
itPlane != itPlaneEnd; ++itPlane)
{
if ((*itPlane).memSpace == memSpace) {
std::map<Clock_T, std::vector<MemoryPlane> >::iterator it;
std::tie(it, std::ignore) = planes.insert(
std::make_pair((*itPlane).allocated,
std::vector<MemoryPlane>()));
(*it).second.push_back((*itPlane));
}
}
}
// Find the planes allocated at time clock or the one just before
// => obtain all the planes that are considered valid at the time clock
Clock_T c = clock;
std::map<Clock_T, std::vector<MemoryPlane> >::iterator itPlanes;
do
itPlanes = planes.find(c);
while (itPlanes == planes.end() && (c--) > 0);
assert(itPlanes != planes.end());
// Fill the stack at time clock
std::map<unsigned int, unsigned int> stack;
for (std::vector<MemoryPlane>::const_iterator
it = (*itPlanes).second.begin(), itEnd = (*itPlanes).second.end();
it != itEnd; ++it)
{
stack.insert(std::make_pair((*it).getContiguousOffset(),
(*it).getContiguousSize()));
if ((*it).getWrappedSize() > 0) {
stack.insert(std::make_pair((*it).getWrappedOffset(),
(*it).getWrappedSize()));
}
}
return stack;
}
std::pair<Aidge::MemoryManager::Clock_T, unsigned int>
Aidge::MemoryManager::getMaxHole(std::shared_ptr<MemorySpace> memSpace) const
{
std::map<Clock_T, unsigned int> holesSize;
for (std::map<std::shared_ptr<Node>, std::vector<MemoryPlane> >
::const_iterator itNode = mMemPlanes.begin(),
itNodeEnd = mMemPlanes.end(); itNode != itNodeEnd; ++itNode)
{
for (std::vector<MemoryPlane>::const_iterator itPlane
= (*itNode).second.begin(), itPlaneEnd = (*itNode).second.end();
itPlane != itPlaneEnd; ++itPlane)
{
if ((*itPlane).memSpace == memSpace) {
const unsigned int holeSize = memSpace->size
- (*itPlane).getContiguousSize()
- (*itPlane).getWrappedSize();
std::map<Clock_T, unsigned int>::iterator it;
bool newInsert;
std::tie(it, newInsert) = holesSize.insert(
std::make_pair((*itPlane).allocated, holeSize));
if (!newInsert) {
// Another plane exists at the same time, one must substract
// the size of this other plane from the hole size
(*it).second = std::max(0, static_cast<int>((*it).second)
- static_cast<int>((*itPlane).getContiguousSize())
- static_cast<int>((*itPlane).getWrappedSize()));
}
}
}
}
return *std::max_element(holesSize.begin(),
holesSize.end(),
[](const auto& left, const auto& right) {
return std::max(left.second, right.second);
});
}