-
Thibault Allenet authoredThibault Allenet authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
Tests_Utils.cpp 4.05 KiB
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <catch2/catch_test_macros.hpp>
#include <catch2/catch_template_test_macros.hpp>
#include <memory>
#include <string>
#include "opencv2/core.hpp"
#include "aidge/backend/opencv/utils/Utils.hpp"
#include "aidge/data/Tensor.hpp"
#include "aidge/backend/opencv/data/TensorImpl.hpp"
#include "aidge/backend/cpu/data/TensorImpl.hpp"
using namespace Aidge;
template <typename T>
cv::Mat createRandomMat(int rows, int cols) {
cv::Mat randomMat(rows, cols, cv::DataType<T>::type);
cv::randu(randomMat, cv::Scalar::all(0), cv::Scalar::all(255));
return randomMat;
}
// TEMPLATE_TEST_CASE("Opencv Utils", "[Utils][OpenCV]", char, unsigned char, short, unsigned short, int, float, double) {
// TODO : perform test for char and double
TEMPLATE_TEST_CASE("Opencv Utils", "[Utils][OpenCV]", signed char, unsigned char, short, unsigned short, int, float, double) {
constexpr int num_test_matrices = 50;
SECTION("Test create tensor from opencv and convert to cpu") {
// Generate random cv::mat
for (int i = 0; i < num_test_matrices; ++i) {
// Opencv mat have maximum 512 channels
int ch = std::rand() % 512 + 1;
int rows = std::rand() % 10 + 1;
int cols = std::rand() % 10 + 1;
std::vector<cv::Mat> channels;
cv::Mat mat;
for (int c = 0; c < ch; ++c){
// Create a random matrix
cv::Mat randomMat = createRandomMat<TestType>(rows, cols);
// Add each random matrix to the vector
channels.push_back(randomMat);
}
// Merge the vector of cv mat into one cv mat
cv::merge(channels, mat);
// Check the size and datatype of the matrix
REQUIRE(mat.rows == rows);
REQUIRE(mat.cols == cols);
REQUIRE(mat.channels() == ch);
REQUIRE(mat.depth() == cv::DataType<TestType>::type);
// Instanciate a tensor opencv
auto tensorOcv = tensorOpencv(mat);
// Check the size of the tensor
REQUIRE(mat.channels() == tensorOcv->dims()[0]);
REQUIRE(mat.rows == tensorOcv->dims()[1]);
REQUIRE(mat.cols == tensorOcv->dims()[2]);
// Check the matrix inside the tensor coorresponds to the matrix
TensorImpl_opencv_* tImpl_opencv = dynamic_cast<TensorImpl_opencv_*>(tensorOcv->getImpl().get());
auto mat_tensor = tImpl_opencv->data();
REQUIRE(mat_tensor.size() == mat.size());
REQUIRE(cv::countNonZero(mat_tensor != mat) == 0);
// Convert opencv tensor to cpu tensor
auto tensorCpu = convertCpu(tensorOcv);
// Split the mat from tensor opencv into channels
std::vector<cv::Mat> channels_split;
cv::split(mat_tensor, channels_split);
// Get the ptr to the std::vector<TestType> as a void * with rawPtr()
auto cpu_ptr = static_cast<TestType*>(tensorCpu->getImpl()->rawPtr());
// Compare the tensor cpu values with the cv mat in an elementwise fashion
// Loop over channels
for (int c = 0; c < ch; ++c) {
// Loop over rows
for (int i = 0; i < rows; ++i) {
// Loop over columns
for (int j = 0; j < cols; ++j) {
TestType elementValue = channels_split[c].at<TestType>(i, j);
TestType elementValue_cpu = cpu_ptr[c*(rows*cols)+i*cols+j];
REQUIRE(elementValue == elementValue_cpu);
}
}
}
}
}
}