-
Houssem ROUIS authoredHoussem ROUIS authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
Test_AvgPoolingImpl.cpp 12.89 KiB
/********************************************************************************
* Copyright (c) 2024 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <array>
#include <catch2/catch_test_macros.hpp>
#include <cuda_fp16.h>
#include <numeric> // std::accumulate
#include <random> // std::random_device, std::mt19937, std::uniform_real_distribution
#include "Test_cuda.hpp"
#include "aidge/data/half.hpp"
#include "aidge/data/Tensor.hpp"
#include "aidge/backend/cpu.hpp"
#include "aidge/backend/cuda.hpp"
using namespace Aidge;
TEST_CASE("[gpu/operator] AvgPooling(forward)", "[AvgPooling][GPU]") {
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array4D<float,2,2,5,5> { //NCHW
{
{
{{ 0, 1, 2, 3, 4},
{ 5, 6, 7, 8, 9},
{ 10, 11, 12, 13, 14},
{ 15, 16, 17, 18, 19},
{ 20, 21, 22, 23, 24}},
{{ 25, 26, 27, 28, 29},
{ 30, 31, 32, 33, 34},
{ 35, 36, 37, 38, 39},
{ 40, 41, 42, 43, 44},
{ 45, 46, 47, 48, 49}}
},
{
{{100, 101, 102, 103, 104},
{105, 106, 107, 108, 109},
{110, 111, 112, 113, 114},
{115, 116, 117, 118, 119},
{120, 121, 122, 123, 124}},
{{125, 126, 127, 128, 129},
{130, 131, 132, 133, 134},
{135, 136, 137, 138, 139},
{140, 141, 142, 143, 144},
{145, 146, 147, 148, 149}}
}
}
});
SECTION("Stride") {
std::shared_ptr<Node> myAvgPool = AvgPooling({2,2}, "myAvgPool", {2,2});
auto op = std::static_pointer_cast<OperatorTensor>(myAvgPool -> getOperator());
std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<float,2,2,2,2> {
{
{
{{ 3, 5},
{ 13, 15}},
{{ 28, 30},
{ 38, 40}}
},
{
{{103, 105},
{113, 115}},
{{128, 130},
{138, 140}}
}
}
});
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cuda");
op->computeOutputDims();
myAvgPool->forward();
float* computedOutput = new float[myOutput->size()]();
cudaMemcpy(computedOutput, op->getOutput(0)->getImpl()->rawPtr(), sizeof(float) * myOutput->size(), cudaMemcpyDeviceToHost);
for(int i = 0; i < myOutput->size(); i++){
const float targetOutput = *(static_cast<float*>(myOutput->getImpl()->rawPtr()) + i);
REQUIRE(fabs(computedOutput[i] - targetOutput) < 1e-6);
}
delete[] computedOutput;
}
SECTION("Stride >= feature dim") {
std::shared_ptr<Tensor> myInput2 = std::make_shared<Tensor>(Array4D<float,1,1,3,3> { //NCHW
{
{
{{0.3745, 0.9507, 0.7320},
{0.5987, 0.1560, 0.1560},
{0.0581, 0.8662, 0.6011}}
}
}
});
std::shared_ptr<Node> myAvgPool = AvgPooling({3,3}, "myAvgPool", {3,3});
auto op = std::static_pointer_cast<OperatorTensor>(myAvgPool -> getOperator());
std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<float,1,1,1,1> {
{{{{(0.3745 + 0.9507 + 0.7320 + 0.5987 + 0.1560 + 0.1560 + 0.0581 + 0.8662 + 0.6011)/9.0}}}}
});
op->associateInput(0,myInput2);
op->setDataType(DataType::Float32);
op->setBackend("cuda");
op->computeOutputDims();
myAvgPool->forward();
float* computedOutput = new float[myOutput->size()]();
cudaMemcpy(computedOutput, op->getOutput(0)->getImpl()->rawPtr(), sizeof(float) * myOutput->size(), cudaMemcpyDeviceToHost);
for(int i = 0; i < myOutput->size(); i++){
const float targetOutput = *(static_cast<float*>(myOutput->getImpl()->rawPtr()) + i);
REQUIRE(fabs(computedOutput[i] - targetOutput) < 1e-6);
}
delete[] computedOutput;
}
SECTION("half") {
std::shared_ptr<Tensor> myInput2 = std::make_shared<Tensor>(Array4D<half_float::half,1,1,3,3> { //NCHW
{
{
{{half_float::half(0.3745), half_float::half(0.9507), half_float::half(0.7320)},
{half_float::half(0.5987), half_float::half(0.1560), half_float::half(0.1560)},
{half_float::half(0.0581), half_float::half(0.8662), half_float::half(0.6011)}}
}
}
});
myInput2->setBackend("cuda");
std::shared_ptr<Node> myAvgPool = AvgPooling({3,3}, "mymyAvgPoolcdw", {3,3});
auto op = std::static_pointer_cast<OperatorTensor>(myAvgPool -> getOperator());
std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<half_float::half,1,1,1,1> {
{{{{(half_float::half(0.3745) + half_float::half(0.9507) + half_float::half(0.7320) + half_float::half(0.5987) + half_float::half(0.1560) + half_float::half(0.1560) + half_float::half(0.0581) + half_float::half(0.8662) + half_float::half(0.6011))/half_float::half(9.0)}}}}
});
op->associateInput(0,myInput2);
op->setDataType(DataType::Float16);
op->setBackend("cuda");
op->computeOutputDims();
myAvgPool->forward();
half_float::half* computedOutput = new half_float::half[myOutput->size()]();
cudaMemcpy(computedOutput, op->getOutput(0)->getImpl()->rawPtr(), sizeof(half_float::half) * myOutput->size(), cudaMemcpyDeviceToHost);
for(int i = 0; i < myOutput->size(); i++){
const half_float::half targetOutput = *(static_cast<half_float::half*>(myOutput->getImpl()->rawPtr()) + i);
REQUIRE(fabs(computedOutput[i] - targetOutput) < 1e-6);
}
delete[] computedOutput;
}
int number_of_operation{0};
SECTION("Random Input") {
constexpr std::uint16_t NBTRIALS = 10;
std::size_t kernel = 2;
std::size_t stride = 2;
// Create a random number generator
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<float> valueDist(
0.1f, 1.1f); // Random float distribution between 0 and 1
std::uniform_int_distribution<std::size_t> dimSizeDist(std::size_t(2),
std::size_t(10));
std::uniform_int_distribution<std::size_t> nbDimsDist(std::size_t(4), std::size_t(4));
// Create AveragePooling Operator
std::shared_ptr<Node> myAvgPool = AvgPooling({kernel,kernel}, "myAvgPool", {stride,stride});
auto op = std::static_pointer_cast<OperatorTensor>(myAvgPool -> getOperator());
op->setDataType(DataType::Float32);
op->setBackend("cpu");
// Create the input Tensor
std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>();
op->associateInput(0, T0);
T0->setDataType(DataType::Float32);
T0->setBackend("cpu");
// To measure execution time of 'AveragePooling_Op::forward()'
std::chrono::time_point<std::chrono::system_clock> start;
std::chrono::time_point<std::chrono::system_clock> end;
std::chrono::duration<double, std::micro> duration{};
std::size_t number_of_operation = 0;
SECTION("OutDims") {
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
// generate a random Tensor
const std::size_t nbDims = nbDimsDist(gen);
std::vector<std::size_t> dims;
for (std::size_t i = 0; i < nbDims; ++i) {
dims.push_back(dimSizeDist(gen));
}
const std::size_t nb_elements = std::accumulate(dims.cbegin(), dims.cend(), std::size_t(1), std::multiplies<std::size_t>());
number_of_operation += nb_elements;
// Fill input tensor
float* array0 = new float[nb_elements];
for (std::size_t i = 0; i < nb_elements; ++i) {
array0[i] = valueDist(gen);
}
T0->resize(dims);
T0 -> getImpl() -> setRawPtr(array0, nb_elements);
// Run inference
op->computeOutputDims();
start = std::chrono::system_clock::now();
myAvgPool->forward();
end = std::chrono::system_clock::now();
duration += std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// Verify output dimensions
REQUIRE(op->getOutput(0)->nbDims() == dims.size());
for (size_t i = 0; i < op->getOutput(0)->nbDims(); ++i) {
if(i == 2 || i == 3)
REQUIRE(op->getOutput(0)->dims()[i] == (1 + static_cast<DimSize_t>(std::floor(static_cast<float>(dims[i] - kernel) / static_cast<float>(stride)))));
else
REQUIRE(op->getOutput(0)->dims()[i] == dims[i]);
}
delete[] array0;
}
std::cout << "number of elements over time spent: " << (number_of_operation / duration.count())<< std::endl;
std::cout << "total time: " << duration.count() << "μs" << std::endl;
}
SECTION("Values") {
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
// generate a random Tensor
const std::size_t nbDims = nbDimsDist(gen);
std::vector<std::size_t> dims;
for (std::size_t i = 0; i < nbDims; ++i) {
dims.push_back(4);
}
const std::size_t nb_elements = std::accumulate(dims.cbegin(), dims.cend(), std::size_t(1), std::multiplies<std::size_t>());
number_of_operation += nb_elements;
// Fill input tensor
float* array0 = new float[nb_elements];
for (std::size_t i = 0; i < nb_elements; ++i) {
array0[i] = valueDist(gen);
}
T0->resize(dims);
T0 -> getImpl() -> setRawPtr(array0, nb_elements);
// Fill expected output
std::vector<float> result;
std::size_t rows = dims[2], cols = dims[3], nbMat = dims[0] * dims[1], matSize = rows*cols;
for (size_t i = 0; i < nbMat; i++)
{
for(size_t r=0; r< rows; r += stride){
for(size_t c=0; c< cols; c += stride){
float sum = 0.0f;
for (size_t m = 0; m < kernel; m++)
{
for (size_t n = 0; n < kernel; n++)
{
sum += array0[i * matSize + (r + m) * cols + c + n];
}
}
result.push_back(sum/(kernel*kernel));
}
}
}
// energy based model
//adversarial attacks: add noise on image so perturber le modèle
// white box attacks and black box attacks
// langevin sampling
// Run inference
op->computeOutputDims();
start = std::chrono::system_clock::now();
myAvgPool->forward();
end = std::chrono::system_clock::now();
duration += std::chrono::duration_cast<std::chrono::microseconds>(end - start);
std::cout << "---------output" << std::endl;
op->getOutput(0)->print();
float* computedOutput = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr());
for (size_t i = 0; i < op->getOutput(0)->size(); i++)
{
std::cout << "i " << i << " computed: "<< computedOutput[i] << ", expected " << result[i] << std::endl;
// REQUIRE(approxEq<float>(computedOutput[i], result[i]));
REQUIRE(abs(computedOutput[i] - result[i]) < 1e-6);
}
delete[] array0;
}
std::cout << "number of elements over time spent: " << (number_of_operation / duration.count())<< std::endl;
std::cout << "total time: " << duration.count() << "μs" << std::endl;
}
}
}