Skip to content
Snippets Groups Projects
Commit fb857a5b authored by Noam Zerah's avatar Noam Zerah Committed by Grégoire Kubler
Browse files

Added Bitshift Operator

parent da37fdb4
No related branches found
No related tags found
2 merge requests!93Release v0.3.0,!88Added Bitshift Operator
...@@ -19,6 +19,7 @@ ...@@ -19,6 +19,7 @@
#include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp" #include "aidge/backend/cpu/operator/AvgPoolingImpl.hpp"
#include "aidge/backend/cpu/operator/MaxPoolingImpl.hpp" #include "aidge/backend/cpu/operator/MaxPoolingImpl.hpp"
#include "aidge/backend/cpu/operator/BatchNormImpl.hpp" #include "aidge/backend/cpu/operator/BatchNormImpl.hpp"
#include "aidge/backend/cpu/operator/BitShiftImpl.hpp"
#include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp" #include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp"
#include "aidge/backend/cpu/operator/ConvImpl.hpp" #include "aidge/backend/cpu/operator/ConvImpl.hpp"
#include "aidge/backend/cpu/operator/ConstantOfShapeImpl.hpp" #include "aidge/backend/cpu/operator/ConstantOfShapeImpl.hpp"
......
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_BITSHIFTIMPL_H_
#define AIDGE_CPU_OPERATOR_BITSHIFTIMPL_H_
#include "aidge/backend/cpu/operator/OperatorImpl.hpp"
#include "aidge/operator/BitShift.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
#include "aidge/backend/cpu/data/GetCPUPtr.h"
#include <memory>
#include <vector>
namespace Aidge {
// Operator implementation entry point for the backend
using BitShiftImpl_cpu = OperatorImpl_cpu<BitShift_Op,
void(const BitShift_Op::BitShiftDirection,
const std::vector<std::size_t>&,
const std::vector<std::size_t>&,
const std::vector<std::size_t>&,
const void*,
const void*,
void*)>;
// Implementation entry point registration to Operator
REGISTRAR(BitShift_Op,"cpu",Aidge::BitShiftImpl_cpu::create);
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_BITSHIFTIMPL_H_ */
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_BITSHIFTIMPL_KERNELS_H_
#define AIDGE_CPU_OPERATOR_BITSHIFTIMPL_KERNELS_H_
#include "aidge/utils/Registrar.hpp"
#include <cstdint> // std::int32_t, std::int64_t
#include "aidge/operator/BitShift.hpp"
#include "aidge/backend/cpu/data/Broadcasting.hpp"
#include "aidge/backend/cpu/operator/BitShiftImpl.hpp"
namespace Aidge {
template <class I1, class I2, class O>
void BitShiftImpl_cpu_forward_kernel(
const BitShift_Op::BitShiftDirection direction,
const std::vector<std::size_t>& input1Dims,
const std::vector<std::size_t>& input2Dims,
const std::vector<std::size_t>& outputDims,
const void* input1_,
const void* input2_,
void* output_
) {
const I1* input_1 = static_cast<const I1*>(input1_);
const I2* input_2 = static_cast<const I2*>(input2_);
O* output = static_cast<O*>(output_);
const size_t totalElements = std::accumulate(outputDims.begin(), outputDims.end(), std::size_t(1), std::multiplies<std::size_t>());
for (std::size_t oIndex = 0; oIndex < totalElements; ++oIndex)
{
std::vector<size_t> indexes = getMultiDimIndices(outputDims, oIndex);
std::size_t idx1 = getFlattenedIndex(input1Dims, indexes);
std::size_t idx2 = getFlattenedIndex(input2Dims, indexes);
if(direction == BitShift_Op::BitShiftDirection::right)
{
output[oIndex]= input_1[idx1] >> input_2[idx2];
}
else
{
output[oIndex] = input_1[idx1] << input_2[idx2];
}
}
}
REGISTRAR(BitShiftImpl_cpu,
{DataType::Int32},
{ProdConso::inPlaceModel,Aidge::BitShiftImpl_cpu_forward_kernel<std::int32_t, std::int32_t, std::int32_t>,nullptr});
REGISTRAR(BitShiftImpl_cpu,
{DataType::Int64},
{ProdConso::inPlaceModel,Aidge::BitShiftImpl_cpu_forward_kernel<std::int64_t, std::int64_t, std::int64_t>,nullptr});
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_BitShiftIMPL_KERNELS_H_ */
\ No newline at end of file
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <cassert>
#include <chrono> // std::chrono::milliseconds
#include <numeric>
#include <thread> // std::this_thread::sleep_for
#include <vector>
#include "aidge/utils/Types.h"
#include "aidge/backend/cpu/data/Broadcasting.hpp"
#include "aidge/backend/cpu/data/GetCPUPtr.h"
#include "aidge/backend/cpu/operator/BitShiftImpl.hpp"
#include "aidge/backend/cpu/operator/BitShiftImpl_kernels.hpp"
template<>
void Aidge::BitShiftImpl_cpu::forward() {
const auto& op_ = dynamic_cast<const BitShift_Op&>(mOp);
const auto impl = Registrar<BitShiftImpl_cpu>::create(getBestMatch(getRequiredSpec()));
const std::vector<std::size_t> inputDims0 = getBroadcastedDims(std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims());
const std::vector<std::size_t> inputDims1 = getBroadcastedDims(std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dims());
BitShift_Op::BitShiftDirection direction = op_.direction();
// Call kernel
impl.forward(
direction,
inputDims0,
inputDims1,
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
getCPUPtr(mOp.getRawInput(0)),
getCPUPtr(mOp.getRawInput(1)),
getCPUPtr(mOp.getRawOutput(0)));
}
template <>
void Aidge::BitShiftImpl_cpu::backward() {
AIDGE_THROW_OR_ABORT(std::runtime_error, "Backward not yet implemented for BitShift_Op on backend cpu");
}
\ No newline at end of file
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <catch2/catch_test_macros.hpp>
#include <cstddef> // std::size_t
#include <cstdint> // std::uint16_t
#include <chrono>
#include <iostream>
#include <memory>
#include <numeric>
#include <random> // std::random_device, std::mt19937, std::uniform_real_distribution
#include <iomanip>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/BitShift.hpp"
#include "aidge/utils/TensorUtils.hpp"
namespace Aidge {
TEST_CASE("[cpu/operator] BitShift_TEST", "[BitShift][CPU]") {
constexpr std::uint16_t NBTRIALS = 15;
// Create a random number generator
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<int> valueDist(-15, 15);
std::uniform_int_distribution<std::size_t> dimSizeDist(std::size_t(2), std::size_t(5));
std::uniform_int_distribution<std::size_t> nbDimsDist(std::size_t(1), std::size_t(3));
std::uniform_int_distribution<int> boolDist(0,1);
BitShift_Op::BitShiftDirection direction = BitShift_Op::BitShiftDirection::left;
if(valueDist(gen) % 2 == 0)
{
direction = BitShift_Op::BitShiftDirection::right;
}
// Create BitShift Operator
std::shared_ptr<Node> myBitShift = BitShift(direction);
auto op = std::static_pointer_cast<OperatorTensor>(myBitShift-> getOperator());
op->setDataType(DataType::Int32);
op->setBackend("cpu");
// Create 2 input Tensors
std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>();
op->associateInput(0,T0);
T0->setDataType(DataType::Int32);
T0->setBackend("cpu");
std::shared_ptr<Tensor> T1 = std::make_shared<Tensor>();
op -> associateInput(1,T1);
T1->setDataType(DataType::Int32);
T1->setBackend("cpu");
// Create results Tensor
std::shared_ptr<Tensor> Tres = std::make_shared<Tensor>();
Tres->setDataType(DataType::Int32);
Tres->setBackend("cpu");
// To measure execution time of 'BitShift_Op::forward()' member function call
std::chrono::time_point<std::chrono::system_clock> start;
std::chrono::time_point<std::chrono::system_clock> end;
std::chrono::duration<double, std::micro> duration{};
SECTION("BitShiftImpl_cpu::forward()") {
SECTION("Test Forward Kernel with same dimensions") {
std::size_t number_of_operation = 0;
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
// generate 2 random Tensors
const std::size_t nbDims = nbDimsDist(gen);
std::vector<std::size_t> dims;
for (std::size_t i = 0; i < nbDims; ++i) {
dims.push_back(dimSizeDist(gen));
}
const std::size_t nb_elements = std::accumulate(dims.cbegin(), dims.cend(), std::size_t(1), std::multiplies<std::size_t>());
number_of_operation += nb_elements;
// without broadcasting
int* array0 = new int[nb_elements];
int* array1 = new int[nb_elements];
int* result = new int[nb_elements];
for (std::size_t i = 0; i < nb_elements; ++i) {
array0[i] = valueDist(gen);
array1[i] = std::abs(valueDist(gen)); // bitshift is impossible with negative value
if(direction == BitShift_Op::BitShiftDirection::left)
{
result[i] = array0[i] << array1[i];
}
else
{
result[i] = array0[i] >> array1[i];
}
}
// input0
T0->resize(dims);
T0 -> getImpl() -> setRawPtr(array0, nb_elements);
// input1
T1->resize(dims);
T1 -> getImpl() -> setRawPtr(array1, nb_elements);
// results
Tres->resize(dims);
Tres -> getImpl() -> setRawPtr(result, nb_elements);
op->forwardDims();
start = std::chrono::system_clock::now();
myBitShift->forward();
end = std::chrono::system_clock::now();
duration += std::chrono::duration_cast<std::chrono::microseconds>(end - start);
bool is_eq = approxEq<int>(*(op->getOutput(0)), *Tres);
auto Output = *(op->getOutput(0));
auto prt = Output.getImpl()->rawPtr();
REQUIRE(is_eq);
delete[] array0;
delete[] array1;
delete[] result;
}
std::cout << "number of elements over time spent: " << (number_of_operation / duration.count())<< std::endl;
std::cout << "total time: " << duration.count() << "μs" << std::endl;
}
SECTION("Test BitShift kernels with Broadcasting") {
std::size_t number_of_operation = 0;
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
// generate 2 random Tensors
// handle dimensions, replace some dimensions with '1' to get broadcasting
constexpr std::size_t nbDims = 4;
std::vector<std::size_t> dims;
for (std::size_t i = 0; i < nbDims; ++i) {
dims.push_back(dimSizeDist(gen));
}
std::vector<std::size_t> dims0 = dims;
std::vector<std::size_t> dims1 = dims;
std::vector<std::size_t> dimsOut = dims;
for (std::size_t i = 0; i < nbDims; ++i) {
if (boolDist(gen)) {
dims0[i] = 1;
}
if (boolDist(gen)) {
dims1[i] = 1;
}
dimsOut[i] = (dims0[i] == 1) ? dims1[i] : dims0[i];
}
// create arrays and fill them with random values
int* array0 = new int[dims0[0]*dims0[1]*dims0[2]*dims0[3]];
int* array1 = new int[dims1[0]*dims1[1]*dims1[2]*dims1[3]];
int* result = new int[dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]];
for (std::size_t i = 0; i < dims0[0]*dims0[1]*dims0[2]*dims0[3]; ++i) {
array0[i] = valueDist(gen);
}
for (std::size_t i = 0; i < dims1[0]*dims1[1]*dims1[2]*dims1[3]; ++i) {
array1[i] = std::abs(valueDist(gen));
}
//True result with broadcast
const std::size_t strides0[nbDims] = {dims0[1]*dims0[2]*dims0[3], dims0[2]*dims0[3], dims0[3], 1};
const std::size_t strides1[nbDims] = {dims1[1]*dims1[2]*dims1[3], dims1[2]*dims1[3], dims1[3], 1};
for (std::size_t a = 0; a < dimsOut[0]; ++a) {
for (std::size_t b = 0; b < dimsOut[1]; ++b) {
const std::size_t idx0_0 = strides0[0] * ((dims0[0] > 1) ? a : 0)
+ strides0[1] * ((dims0[1] > 1) ? b : 0);
const std::size_t idx1_0 = strides1[0] * ((dims1[0] > 1) ? a : 0)
+ strides1[1] * ((dims1[1] > 1) ? b : 0);
for (std::size_t c = 0; c < dimsOut[2]; ++c) {
const std::size_t idx_out = dimsOut[3] * (c + dimsOut[2] * (b + dimsOut[1] * a));
for (std::size_t d = 0; d < dimsOut[3]; ++d) {
std::size_t idx0 = idx0_0
+ strides0[2] * ((dims0[2] > 1) ? c : 0)
+ ((dims0[3] > 1) ? d : 0);
std::size_t idx1 = idx1_0
+ strides1[2] * ((dims1[2] > 1) ? c : 0)
+ ((dims1[3] > 1) ? d : 0);
if(direction == BitShift_Op::BitShiftDirection::left)
{
result[idx_out + d] = array0[idx0] << array1[idx1];
}
else
{
result[idx_out + d] = array0[idx0] >> array1[idx1];
}
}
}
}
}
// conversion to Aidge::Tensors
// input0
T0->resize(dims0);
T0 -> getImpl() -> setRawPtr(array0, dims0[0]*dims0[1]*dims0[2]*dims0[3]);
// input1
T1->resize(dims1);
T1 -> getImpl() -> setRawPtr(array1, dims1[0]*dims1[1]*dims1[2]*dims1[3]);
// results
Tres->resize(dimsOut);
Tres -> getImpl() -> setRawPtr(result, dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]);
// compute result
op->forwardDims();
start = std::chrono::system_clock::now();
myBitShift->forward();
end = std::chrono::system_clock::now();
duration += std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// comparison between truth and computed result
bool equiv = (approxEq<int>(*(op->getOutput(0)), *Tres));
if(equiv == false)
{
std::cout << "Problem\n";
}
REQUIRE(equiv);
delete[] array0;
delete[] array1;
delete[] result;
const std::size_t nb_elements = std::accumulate(dimsOut.cbegin(), dimsOut.cend(), std::size_t(1), std::multiplies<std::size_t>());
number_of_operation += nb_elements;
}
std::cout << "number of elements over time spent: " << (number_of_operation / duration.count())<< std::endl;
std::cout << "total time: " << duration.count() << "μs" << std::endl;
}
}
} // namespace Aidge
}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment