Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
aidge_backend_cpu
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Eclipse Projects
aidge
aidge_backend_cpu
Commits
ec061ede
Commit
ec061ede
authored
11 months ago
by
Maxence Naud
Browse files
Options
Downloads
Patches
Plain Diff
Upd tests
parent
53700dc0
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!50
version 0.2.0
Pipeline
#43330
passed
11 months ago
Stage: build
Stage: test
Changes
2
Pipelines
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
unit_tests/operator/Test_MatMulImpl.cpp
+36
-60
36 additions, 60 deletions
unit_tests/operator/Test_MatMulImpl.cpp
unit_tests/scheduler/Test_Scheduler.cpp
+3
-2
3 additions, 2 deletions
unit_tests/scheduler/Test_Scheduler.cpp
with
39 additions
and
62 deletions
unit_tests/operator/Test_MatMulImpl.cpp
+
36
−
60
View file @
ec061ede
...
@@ -54,26 +54,22 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul][CPU]") {
...
@@ -54,26 +54,22 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul][CPU]") {
totalComputation
+=
dim0
*
dim1
*
dim2
;
totalComputation
+=
dim0
*
dim1
*
dim2
;
// Create and populate the array with random float values
// Create and populate the array with random float values
float
bigArray1
[
dim0
][
dim1
];
float
*
bigArray1
=
new
float
[
dim0
*
dim1
];
for
(
int
i
=
0
;
i
<
dim0
;
++
i
)
{
for
(
int
i
=
0
;
i
<
dim0
*
dim1
;
++
i
)
{
for
(
int
j
=
0
;
j
<
dim1
;
++
j
)
{
bigArray1
[
i
]
=
dis
(
gen
);
// Generate random float value
bigArray1
[
i
][
j
]
=
dis
(
gen
);
// Generate random float value
}
}
}
float
bigArray2
[
dim1
][
dim2
];
float
*
bigArray2
=
new
float
[
dim1
*
dim2
];
for
(
int
i
=
0
;
i
<
dim1
;
++
i
)
{
for
(
int
i
=
0
;
i
<
dim1
*
dim2
;
++
i
)
{
for
(
int
j
=
0
;
j
<
dim2
;
++
j
)
{
bigArray2
[
i
]
=
dis
(
gen
);
// Generate random float value
bigArray2
[
i
][
j
]
=
dis
(
gen
);
// Generate random float value
}
}
}
float
res
[
dim0
][
dim2
];
float
*
res
=
new
float
[
dim0
*
dim2
];
for
(
int
i
=
0
;
i
<
dim0
;
++
i
)
{
for
(
int
i
=
0
;
i
<
dim0
;
++
i
)
{
for
(
int
j
=
0
;
j
<
dim2
;
++
j
)
{
for
(
int
j
=
0
;
j
<
dim2
;
++
j
)
{
float
sum
=
0.0
;
float
sum
=
0.0
;
for
(
int
k
=
0
;
k
<
dim1
;
++
k
)
{
for
(
int
k
=
0
;
k
<
dim1
;
++
k
)
{
sum
+=
bigArray1
[
i
][
k
]
*
bigArray2
[
k
][
j
];
sum
+=
bigArray1
[
i
*
dim1
+
k
]
*
bigArray2
[
k
*
dim2
+
j
];
}
}
res
[
i
][
j
]
=
sum
;
res
[
i
*
dim2
+
j
]
=
sum
;
}
}
}
}
...
@@ -82,17 +78,17 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul][CPU]") {
...
@@ -82,17 +78,17 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul][CPU]") {
std
::
shared_ptr
<
Tensor
>
T1
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
std
::
shared_ptr
<
Tensor
>
T1
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
T1
->
resize
({
dim0
,
dim1
});
T1
->
resize
({
dim0
,
dim1
});
T1
->
setBackend
(
"cpu"
);
T1
->
setBackend
(
"cpu"
);
T1
->
getImpl
()
->
setRawPtr
(
&
bigArray1
[
0
][
0
]
,
dim0
*
dim1
);
T1
->
getImpl
()
->
setRawPtr
(
bigArray1
,
dim0
*
dim1
);
// Convert bigArray2 to Tensor
// Convert bigArray2 to Tensor
std
::
shared_ptr
<
Tensor
>
T2
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
std
::
shared_ptr
<
Tensor
>
T2
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
T2
->
resize
({
dim1
,
dim2
});
T2
->
resize
({
dim1
,
dim2
});
T2
->
setBackend
(
"cpu"
);
T2
->
setBackend
(
"cpu"
);
T2
->
getImpl
()
->
setRawPtr
(
&
bigArray2
[
0
][
0
]
,
dim1
*
dim2
);
T2
->
getImpl
()
->
setRawPtr
(
bigArray2
,
dim1
*
dim2
);
// convert res to Tensor
// convert res to Tensor
std
::
shared_ptr
<
Tensor
>
Tres
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
std
::
shared_ptr
<
Tensor
>
Tres
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
Tres
->
resize
({
dim0
,
dim2
});
Tres
->
resize
({
dim0
,
dim2
});
Tres
->
setBackend
(
"cpu"
);
Tres
->
setBackend
(
"cpu"
);
Tres
->
getImpl
()
->
setRawPtr
(
&
res
[
0
][
0
]
,
dim0
*
dim2
);
Tres
->
getImpl
()
->
setRawPtr
(
res
,
dim0
*
dim2
);
op
->
associateInput
(
0
,
T1
);
op
->
associateInput
(
0
,
T1
);
op
->
associateInput
(
1
,
T2
);
op
->
associateInput
(
1
,
T2
);
...
@@ -122,31 +118,23 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul][CPU]") {
...
@@ -122,31 +118,23 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul][CPU]") {
totalComputation
+=
dim0
*
dim1
*
dim2
*
dimNb
;
totalComputation
+=
dim0
*
dim1
*
dim2
*
dimNb
;
// Create and populate the array with random float values
// Create and populate the array with random float values
float
bigArray1
[
dimNb
][
dim0
][
dim1
];
float
*
bigArray1
=
new
float
[
dimNb
*
dim0
*
dim1
];
for
(
std
::
size_t
n
=
0
;
n
<
dimNb
;
++
n
)
{
for
(
std
::
size_t
i
=
0
;
i
<
dimNb
*
dim0
*
dim1
;
++
i
)
{
for
(
std
::
size_t
i
=
0
;
i
<
dim0
;
++
i
)
{
bigArray1
[
i
]
=
dis
(
gen
);
// Generate random float value
for
(
std
::
size_t
j
=
0
;
j
<
dim1
;
++
j
)
{
bigArray1
[
n
][
i
][
j
]
=
dis
(
gen
);
// Generate random float value
}
}
}
}
float
bigArray2
[
dimNb
][
dim1
][
dim2
];
float
*
bigArray2
=
new
float
[
dimNb
*
dim1
*
dim2
];
for
(
std
::
size_t
n
=
0
;
n
<
dimNb
;
++
n
)
{
for
(
int
i
=
0
;
i
<
dimNb
*
dim1
*
dim2
;
++
i
)
{
for
(
int
i
=
0
;
i
<
dim1
;
++
i
)
{
bigArray2
[
i
]
=
dis
(
gen
);
// Generate random float value
for
(
int
j
=
0
;
j
<
dim2
;
++
j
)
{
bigArray2
[
n
][
i
][
j
]
=
dis
(
gen
);
// Generate random float value
}
}
}
}
float
res
[
dimNb
][
dim0
][
dim2
];
float
*
res
=
new
float
[
dimNb
*
dim0
*
dim2
];
for
(
std
::
size_t
n
=
0
;
n
<
dimNb
;
++
n
)
{
for
(
std
::
size_t
n
=
0
;
n
<
dimNb
;
++
n
)
{
for
(
int
i
=
0
;
i
<
dim0
;
++
i
)
{
for
(
int
i
=
0
;
i
<
dim0
;
++
i
)
{
for
(
int
j
=
0
;
j
<
dim2
;
++
j
)
{
for
(
int
j
=
0
;
j
<
dim2
;
++
j
)
{
float
sum
=
0.0
;
float
sum
=
0.0
;
for
(
int
k
=
0
;
k
<
dim1
;
++
k
)
{
for
(
int
k
=
0
;
k
<
dim1
;
++
k
)
{
sum
+=
bigArray1
[
n
][
i
][
k
]
*
bigArray2
[
n
][
k
][
j
];
sum
+=
bigArray1
[
n
*
dim0
*
dim1
+
i
*
dim1
+
k
]
*
bigArray2
[
n
*
dim2
*
dim1
+
k
*
dim2
+
j
];
}
}
res
[
n
][
i
][
j
]
=
sum
;
res
[
n
*
dim0
*
dim2
+
i
*
dim2
+
j
]
=
sum
;
}
}
}
}
}
}
...
@@ -154,17 +142,17 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul][CPU]") {
...
@@ -154,17 +142,17 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul][CPU]") {
std
::
shared_ptr
<
Tensor
>
T1
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
std
::
shared_ptr
<
Tensor
>
T1
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
T1
->
resize
({
dimNb
,
dim0
,
dim1
});
T1
->
resize
({
dimNb
,
dim0
,
dim1
});
T1
->
setBackend
(
"cpu"
);
T1
->
setBackend
(
"cpu"
);
T1
->
getImpl
()
->
setRawPtr
(
&
bigArray1
[
0
][
0
]
,
dimNb
*
dim0
*
dim1
);
T1
->
getImpl
()
->
setRawPtr
(
bigArray1
,
dimNb
*
dim0
*
dim1
);
// Convert bigArray2 to Tensor
// Convert bigArray2 to Tensor
std
::
shared_ptr
<
Tensor
>
T2
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
std
::
shared_ptr
<
Tensor
>
T2
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
T2
->
resize
({
dimNb
,
dim1
,
dim2
});
T2
->
resize
({
dimNb
,
dim1
,
dim2
});
T2
->
setBackend
(
"cpu"
);
T2
->
setBackend
(
"cpu"
);
T2
->
getImpl
()
->
setRawPtr
(
&
bigArray2
[
0
][
0
]
,
dimNb
*
dim1
*
dim2
);
T2
->
getImpl
()
->
setRawPtr
(
bigArray2
,
dimNb
*
dim1
*
dim2
);
// convert res to Tensor
// convert res to Tensor
std
::
shared_ptr
<
Tensor
>
Tres
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
std
::
shared_ptr
<
Tensor
>
Tres
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
Tres
->
resize
({
dimNb
,
dim0
,
dim2
});
Tres
->
resize
({
dimNb
,
dim0
,
dim2
});
Tres
->
setBackend
(
"cpu"
);
Tres
->
setBackend
(
"cpu"
);
Tres
->
getImpl
()
->
setRawPtr
(
&
res
[
0
][
0
]
,
dimNb
*
dim0
*
dim2
);
Tres
->
getImpl
()
->
setRawPtr
(
res
,
dimNb
*
dim0
*
dim2
);
op
->
associateInput
(
0
,
T1
);
op
->
associateInput
(
0
,
T1
);
op
->
associateInput
(
1
,
T2
);
op
->
associateInput
(
1
,
T2
);
...
@@ -195,36 +183,24 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul][CPU]") {
...
@@ -195,36 +183,24 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul][CPU]") {
totalComputation
+=
dim0
*
dim1
*
dim2
*
dimNb1
*
dimNb2
;
totalComputation
+=
dim0
*
dim1
*
dim2
*
dimNb1
*
dimNb2
;
// Create and populate the array with random float values
// Create and populate the array with random float values
float
bigArray1
[
dimNb1
][
dimNb2
][
dim0
][
dim1
];
float
*
bigArray1
=
new
float
[
dimNb1
*
dimNb2
*
dim0
*
dim1
];
for
(
std
::
size_t
n1
=
0
;
n1
<
dimNb1
;
++
n1
)
{
for
(
std
::
size_t
i
=
0
;
i
<
dimNb1
*
dimNb2
*
dim0
*
dim1
;
++
i
)
{
for
(
std
::
size_t
n2
=
0
;
n2
<
dimNb2
;
++
n2
)
{
bigArray1
[
i
]
=
dis
(
gen
);
// Generate random float value
for
(
std
::
size_t
i
=
0
;
i
<
dim0
;
++
i
)
{
for
(
std
::
size_t
j
=
0
;
j
<
dim1
;
++
j
)
{
bigArray1
[
n1
][
n2
][
i
][
j
]
=
dis
(
gen
);
// Generate random float value
}
}
}
}
}
float
bigArray2
[
dimNb1
][
dimNb2
][
dim1
][
dim2
];
float
*
bigArray2
=
new
float
[
dimNb1
*
dimNb2
*
dim1
*
dim2
];
for
(
std
::
size_t
n1
=
0
;
n1
<
dimNb1
;
++
n1
)
{
for
(
std
::
size_t
i
=
0
;
i
<
dimNb1
*
dimNb2
*
dim1
*
dim2
;
++
i
)
{
for
(
std
::
size_t
n2
=
0
;
n2
<
dimNb2
;
++
n2
)
{
bigArray2
[
i
]
=
dis
(
gen
);
// Generate random float value
for
(
std
::
size_t
i
=
0
;
i
<
dim1
;
++
i
)
{
for
(
std
::
size_t
j
=
0
;
j
<
dim2
;
++
j
)
{
bigArray2
[
n1
][
n2
][
i
][
j
]
=
dis
(
gen
);
// Generate random float value
}
}
}
}
}
float
res
[
dimNb1
][
dimNb2
][
dim0
][
dim2
];
float
*
res
=
new
float
[
dimNb1
*
dimNb2
*
dim0
*
dim2
];
for
(
std
::
size_t
n1
=
0
;
n1
<
dimNb1
;
++
n1
)
{
for
(
std
::
size_t
n1
=
0
;
n1
<
dimNb1
;
++
n1
)
{
for
(
std
::
size_t
n2
=
0
;
n2
<
dimNb2
;
++
n2
)
{
for
(
std
::
size_t
n2
=
0
;
n2
<
dimNb2
;
++
n2
)
{
for
(
int
i
=
0
;
i
<
dim0
;
++
i
)
{
for
(
int
i
=
0
;
i
<
dim0
;
++
i
)
{
for
(
int
j
=
0
;
j
<
dim2
;
++
j
)
{
for
(
int
j
=
0
;
j
<
dim2
;
++
j
)
{
float
sum
=
0.0
;
float
sum
=
0.0
;
for
(
int
k
=
0
;
k
<
dim1
;
++
k
)
{
for
(
int
k
=
0
;
k
<
dim1
;
++
k
)
{
sum
+=
bigArray1
[
n1
][
n2
][
i
][
k
]
*
bigArray2
[
n1
][
n2
][
k
][
j
];
sum
+=
bigArray1
[
n1
*
dimNb2
*
dim0
*
dim1
+
n2
*
dim0
*
dim1
+
i
*
dim1
+
k
]
*
bigArray2
[
n1
*
dimNb2
*
dim1
*
dim2
+
n2
*
dim1
*
dim2
+
k
*
dim2
+
j
];
}
}
res
[
n1
][
n2
][
i
][
j
]
=
sum
;
res
[
n1
*
dimNb2
*
dim0
*
dim2
+
n2
*
dim0
*
dim2
+
i
*
dim2
+
j
]
=
sum
;
}
}
}
}
}
}
...
@@ -233,17 +209,17 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul][CPU]") {
...
@@ -233,17 +209,17 @@ TEST_CASE("[cpu/operator] MatMul(forward)", "[MatMul][CPU]") {
std
::
shared_ptr
<
Tensor
>
T1
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
std
::
shared_ptr
<
Tensor
>
T1
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
T1
->
resize
({
dimNb1
,
dimNb2
,
dim0
,
dim1
});
T1
->
resize
({
dimNb1
,
dimNb2
,
dim0
,
dim1
});
T1
->
setBackend
(
"cpu"
);
T1
->
setBackend
(
"cpu"
);
T1
->
getImpl
()
->
setRawPtr
(
&
bigArray1
[
0
][
0
]
,
dimNb1
*
dimNb2
*
dim0
*
dim1
);
T1
->
getImpl
()
->
setRawPtr
(
bigArray1
,
dimNb1
*
dimNb2
*
dim0
*
dim1
);
// Convert bigArray2 to Tensor
// Convert bigArray2 to Tensor
std
::
shared_ptr
<
Tensor
>
T2
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
std
::
shared_ptr
<
Tensor
>
T2
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
T2
->
resize
({
dimNb1
,
dimNb2
,
dim1
,
dim2
});
T2
->
resize
({
dimNb1
,
dimNb2
,
dim1
,
dim2
});
T2
->
setBackend
(
"cpu"
);
T2
->
setBackend
(
"cpu"
);
T2
->
getImpl
()
->
setRawPtr
(
&
bigArray2
[
0
][
0
]
,
dimNb1
*
dimNb2
*
dim1
*
dim2
);
T2
->
getImpl
()
->
setRawPtr
(
bigArray2
,
dimNb1
*
dimNb2
*
dim1
*
dim2
);
// convert res to Tensor
// convert res to Tensor
std
::
shared_ptr
<
Tensor
>
Tres
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
std
::
shared_ptr
<
Tensor
>
Tres
=
std
::
make_shared
<
Tensor
>
(
DataType
::
Float32
);
Tres
->
resize
({
dimNb1
,
dimNb2
,
dim0
,
dim2
});
Tres
->
resize
({
dimNb1
,
dimNb2
,
dim0
,
dim2
});
Tres
->
setBackend
(
"cpu"
);
Tres
->
setBackend
(
"cpu"
);
Tres
->
getImpl
()
->
setRawPtr
(
&
res
[
0
][
0
]
,
dimNb1
*
dimNb2
*
dim0
*
dim2
);
Tres
->
getImpl
()
->
setRawPtr
(
res
,
dimNb1
*
dimNb2
*
dim0
*
dim2
);
op
->
associateInput
(
0
,
T1
);
op
->
associateInput
(
0
,
T1
);
op
->
associateInput
(
1
,
T2
);
op
->
associateInput
(
1
,
T2
);
...
...
This diff is collapsed.
Click to expand it.
unit_tests/scheduler/Test_Scheduler.cpp
+
3
−
2
View file @
ec061ede
...
@@ -23,8 +23,8 @@
...
@@ -23,8 +23,8 @@
#include
"aidge/backend/cpu.hpp"
#include
"aidge/backend/cpu.hpp"
#include
"aidge/recipes/GraphViewHelper.hpp"
#include
"aidge/recipes/GraphViewHelper.hpp"
using
namespace
Aidge
;
namespace
Aidge
{
TEST_CASE
(
"[cpu/scheduler] SequentialScheduler(forward)"
)
{
TEST_CASE
(
"[cpu/scheduler] SequentialScheduler(forward)"
)
{
std
::
shared_ptr
<
Tensor
>
inputTensor
=
std
::
shared_ptr
<
Tensor
>
inputTensor
=
...
@@ -433,4 +433,5 @@ TEST_CASE("[cpu/scheduler] SequentialScheduler(backward)", "[scheduler][backward
...
@@ -433,4 +433,5 @@ TEST_CASE("[cpu/scheduler] SequentialScheduler(backward)", "[scheduler][backward
{
7.0
f
,
7.0
f
,
7.0
f
,
7.0
f
,
7.0
f
}}}}});
{
7.0
f
,
7.0
f
,
7.0
f
,
7.0
f
,
7.0
f
}}}}});
REQUIRE_NOTHROW
(
scheduler
.
backward
({
targetOutput
}));
REQUIRE_NOTHROW
(
scheduler
.
backward
({
targetOutput
}));
}
}
\ No newline at end of file
}
// namespace Aidge
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment