Skip to content
Snippets Groups Projects
Commit e8e3f535 authored by Maxence Naud's avatar Maxence Naud
Browse files

[upd] tests following 'aidge_core' changes

parent 5c480cff
No related branches found
No related tags found
No related merge requests found
......@@ -27,89 +27,88 @@
#include "aidge/data/Tensor.hpp"
#include "aidge/filler/Filler.hpp"
#include "aidge/operator/ConstantOfShape.hpp"
#include "aidge/operator/OperatorTensor.hpp"
#include "aidge/utils/TensorUtils.hpp"
#include "aidge/utils/Types.h"
namespace Aidge {
TEST_CASE("[cpu/operator] ConstantOfShape", "[ConstantOfShape][CPU]") {
constexpr std::uint16_t NBTRIALS = 10;
// Create a random number generator
auto random_seed = Catch::Generators::Detail::getSeed;
std::mt19937 gen(random_seed());
std::uniform_real_distribution<float> valueDist(
0.1f, 1.1f); // Random float distribution between 0 and 1
std::uniform_int_distribution<DimSize_t> input_tensor_size_dist(
std::size_t(1), std::size_t(10));
std::uniform_int_distribution<int64_t> input_tensor_values_dist(
std::size_t(1), std::size_t(7));
std::uniform_real_distribution<double> operator_attr_value_dist(-100., 100.);
///////////////////////////////////////////////
// SETUP FUNCTIONS
auto generate_input_tensor =
[&gen, &input_tensor_size_dist,
&input_tensor_values_dist]() -> std::shared_ptr<Tensor> {
std::vector<DimSize_t> input_dims;
input_dims.push_back(input_tensor_size_dist(gen));
TEST_CASE("[cpu/operator] ConstantOfShape(forward)", "[ConstantOfShape][CPU][forward]") {
constexpr std::uint16_t NBTRIALS = 10;
// Create a random number generator
auto random_seed = Catch::Generators::Detail::getSeed;
std::mt19937 gen(random_seed());
std::uniform_real_distribution<float> valueDist(
0.1f, 1.1f); // Random float distribution between 0 and 1
std::uniform_int_distribution<DimSize_t> input_tensor_size_dist(
std::size_t(1), std::size_t(10));
std::uniform_int_distribution<int64_t> input_tensor_values_dist(
std::size_t(1), std::size_t(7));
std::uniform_real_distribution<double> operator_attr_value_dist(-100., 100.);
auto result = std::make_shared<Tensor>(input_dims);
result->setDataType(DataType::Int64);
result->setBackend("cpu");
for (DimSize_t i = 0; i < result->size(); ++i) {
result->set<std::int64_t>(i, input_tensor_values_dist(gen));
}
return result;
};
///////////////////////////////////////////////
// SETUP FUNCTIONS
auto generate_input_tensor =
[&gen, &input_tensor_size_dist,
&input_tensor_values_dist]() -> std::shared_ptr<Tensor> {
std::vector<DimSize_t> input_dims;
input_dims.push_back(input_tensor_size_dist(gen));
auto generate_random_operator =
[&gen,
&operator_attr_value_dist]() -> std::shared_ptr<ConstantOfShape_Op> {
auto node = ConstantOfShape(Tensor(operator_attr_value_dist(gen)));
auto op = std::static_pointer_cast<ConstantOfShape_Op>(node->getOperator());
op->setDataType(DataType::Float64);
op->setBackend("cpu");
return op;
};
auto result = std::make_shared<Tensor>(input_dims);
result->setDataType(DataType::Int64);
result->setBackend("cpu");
for (DimSize_t i = 0; i < result->size(); ++i) {
result->set<std::int64_t>(i, input_tensor_values_dist(gen));
}
return result;
};
auto generate_output_tensor = [](std::shared_ptr<Tensor> input_tensor,
std::shared_ptr<ConstantOfShape_Op> op) {
std::vector<DimSize_t> output_dims;
output_dims.reserve(input_tensor->size());
for (DimSize_t i = 0; i < input_tensor->size(); ++i) {
output_dims.push_back(input_tensor->get<int64_t>(i));
}
auto result = std::make_shared<Tensor>(output_dims);
result->setDataType(op->value().dataType());
result->setBackend("cpu");
constantFiller(result, op->value().get<double>(0));
return result;
};
auto generate_random_operator =
[&gen,
&operator_attr_value_dist]() -> std::shared_ptr<ConstantOfShape_Op> {
std::shared_ptr<ConstantOfShape_Op> op = std::make_shared<ConstantOfShape_Op>(Tensor(operator_attr_value_dist(gen)));
op->setDataType(DataType::Float64);
op->setBackend("cpu");
return op;
};
auto generate_output_tensor = [](std::shared_ptr<Tensor> input_tensor,
std::shared_ptr<ConstantOfShape_Op> op) {
std::vector<DimSize_t> output_dims;
output_dims.reserve(input_tensor->size());
for (DimSize_t i = 0; i < input_tensor->size(); ++i) {
output_dims.push_back(input_tensor->get<std::int64_t>(i));
}
auto result = std::make_shared<Tensor>(output_dims);
result->setDataType(op->value().dataType());
result->setBackend("cpu");
constantFiller(result, op->value().get<double>(0));
return result;
};
/////////////////////////////////////
// BENCHMARKING
std::chrono::time_point<std::chrono::system_clock> start;
std::chrono::time_point<std::chrono::system_clock> end;
std::chrono::duration<double, std::micro> duration{};
int number_of_operation{0};
/////////////////////////////////////
// BENCHMARKING
std::chrono::time_point<std::chrono::system_clock> start;
std::chrono::time_point<std::chrono::system_clock> end;
std::chrono::duration<double, std::micro> duration{};
int number_of_operation{0};
SECTION("ConstantOfShapeImpl_cpu::forward()") {
for (int i = 0; i < NBTRIALS; ++i) {
auto input_T = generate_input_tensor();
std::shared_ptr<ConstantOfShape_Op> op = generate_random_operator();
auto output_T = generate_output_tensor(input_T, op);
op->associateInput(0, input_T);
SECTION("ConstantOfShapeImpl_cpu::forward()") {
for (int i = 0; i < NBTRIALS; ++i) {
auto input_T = generate_input_tensor();
std::shared_ptr<ConstantOfShape_Op> op = generate_random_operator();
auto output_T = generate_output_tensor(input_T, op);
op->associateInput(0, input_T);
REQUIRE(op->forwardDims(true));
REQUIRE_NOTHROW(op->forward());
REQUIRE(op->forwardDims(true));
REQUIRE_NOTHROW(op->forward());
CHECK(output_T->nbDims() == op->getOutput(0)->nbDims());
for (DimIdx_t i = 0; i < output_T->nbDims(); ++i) {
CHECK(output_T->dims().at(i) == op->getOutput(0)->dims().at(i));
}
CHECK(approxEq<double>(*output_T, *op->getOutput(0)));
CHECK(output_T->nbDims() == op->getOutput(0)->nbDims());
for (DimIdx_t i = 0; i < output_T->nbDims(); ++i) {
CHECK(output_T->dims().at(i) == op->getOutput(0)->dims().at(i));
}
CHECK(approxEq<double>(*output_T, *op->getOutput(0)));
}
}
}
}
} // namespace Aidge
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/graph/GraphView.hpp"
#include "aidge/operator/Identity.hpp"
#include "aidge/recipes/Recipes.hpp"
#include <cstdint> // std::int64_t
#include <memory>
#include <catch2/catch_test_macros.hpp>
#include "aidge/graph/OpArgs.hpp"
#include "aidge/operator/ConstantOfShape.hpp"
#include "aidge/operator/Conv.hpp"
#include "aidge/operator/Producer.hpp"
#include "aidge/operator/ReLU.hpp"
#include "aidge/recipes/Recipes.hpp"
#include "aidge/utils/ArrayHelpers.hpp"
#include "aidge/utils/Types.h"
namespace Aidge {
TEST_CASE("[cpu/recipes] foldConstantOfShape",
"[ConstantOfShape][foldConstantOfShape][recipes]") {
auto input_T = std::make_shared<Tensor>(Array1D<std::int64_t, 4>({1, 1, 3, 3}));
auto model = std::make_shared<GraphView>();
SECTION("Sequential model") {
model = Sequential({
Producer(input_T, "prod_0", true),
ConstantOfShape(3, "constantOfShape_0"),
Conv(1, 1, {3, 3}, "Conv_0"),
ReLU("ReLU_1")
});
// aidge_backend_cpu loaded. Recipe should work
REQUIRE(foldConstantOfShape(model) == 1);
CHECK(model->forwardDims());
}
}
} // namespace Aidge
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment