Skip to content
Snippets Groups Projects
Commit d318dbfe authored by Cyril Moineau's avatar Cyril Moineau
Browse files

Merge branch 'feat_operator_round' into 'dev'

[Add] Round Operator

See merge request !94
parents 382a5508 69be92e4
No related branches found
No related tags found
3 merge requests!118v0.4.0,!108v0.4.0,!94[Add] Round Operator
Pipeline #58645 passed
...@@ -40,6 +40,7 @@ ...@@ -40,6 +40,7 @@
#include "aidge/backend/cpu/operator/ReduceMeanImpl.hpp" #include "aidge/backend/cpu/operator/ReduceMeanImpl.hpp"
#include "aidge/backend/cpu/operator/ReduceSumImpl.hpp" #include "aidge/backend/cpu/operator/ReduceSumImpl.hpp"
#include "aidge/backend/cpu/operator/ReLUImpl.hpp" #include "aidge/backend/cpu/operator/ReLUImpl.hpp"
#include "aidge/backend/cpu/operator/RoundImpl.hpp"
#include "aidge/backend/cpu/operator/ScalingImpl.hpp" #include "aidge/backend/cpu/operator/ScalingImpl.hpp"
#include "aidge/backend/cpu/operator/SigmoidImpl.hpp" #include "aidge/backend/cpu/operator/SigmoidImpl.hpp"
#include "aidge/backend/cpu/operator/SqrtImpl.hpp" #include "aidge/backend/cpu/operator/SqrtImpl.hpp"
......
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_ROUNDIMPL_H_
#define AIDGE_CPU_OPERATOR_ROUNDIMPL_H_
#include <cstddef> // std::size_t
#include <memory>
#include <tuple>
#include <vector>
#include "aidge/backend/cpu/operator/OperatorImpl.hpp"
#include "aidge/operator/Round.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
namespace Aidge {
// Operator implementation entry point for the backend
using RoundImpl_cpu = OperatorImpl_cpu<Round_Op,
void(const std::size_t, const void*, void*)>;
// Implementation entry point registration to Operator
REGISTRAR(Round_Op, "cpu", Aidge::RoundImpl_cpu::create);
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_ROUNDIMPL_H_ */
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_ROUNDIMPL_KERNELS_H_
#define AIDGE_CPU_OPERATOR_ROUNDIMPL_KERNELS_H_
#include <cmath> //std::round
#include <cstddef> // std::size_t
#include "aidge/utils/Registrar.hpp"
#include "aidge/backend/cpu/operator/RoundImpl.hpp"
namespace Aidge {
template <class I, class O>
void RoundImpl_cpu_forward_kernel(const std::size_t inputLenght,
const void* input_,
void* output_) {
const I* input = static_cast<const I*>(input_);
O* output = static_cast<O*>(output_);
for (std::size_t i = 0; i < inputLenght; ++i) {
//std::round would not work since it doesn't follow the halves rules (See ONNX Round)
output[i] = static_cast<O>(std::nearbyint(static_cast<float>(input[i])));
}
}
REGISTRAR(RoundImpl_cpu,
{DataType::Float32},
{ProdConso::inPlaceModel, Aidge::RoundImpl_cpu_forward_kernel<float, float>,nullptr});
REGISTRAR(RoundImpl_cpu,
{DataType::Float64},
{ProdConso::inPlaceModel, Aidge::RoundImpl_cpu_forward_kernel<double, double>,nullptr});
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_ROUNDIMPL_KERNELS_H_ */
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <memory>
#include <vector>
#include "aidge/backend/cpu/data/GetCPUPtr.h"
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/Round.hpp"
#include "aidge/utils/ErrorHandling.hpp"
#include "aidge/utils/Types.h"
#include "aidge/backend/cpu/operator/RoundImpl.hpp"
#include "aidge/backend/cpu/operator/RoundImpl_kernels.hpp"
template <>
void Aidge::RoundImpl_cpu::forward() {
std::shared_ptr<Tensor> in0 = std::static_pointer_cast<Tensor>(mOp.getRawInput(0));
std::shared_ptr<Tensor> out0 = std::static_pointer_cast<Tensor>(mOp.getRawOutput(0));
AIDGE_ASSERT(in0, "missing input #0");
// Find the correct kernel type
const auto impl = Registrar<RoundImpl_cpu>::create(getBestMatch(getRequiredSpec()));
// Call kernel
impl.forward(in0->size(),
getCPUPtr(mOp.getRawInput(0)),
getCPUPtr(mOp.getRawOutput(0)));
}
template <>
void Aidge::RoundImpl_cpu::backward() {
AIDGE_THROW_OR_ABORT(std::runtime_error, "Backward not yet implemented for Round_Op on backend cpu");
}
\ No newline at end of file
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <catch2/catch_test_macros.hpp>
#include <cstddef> // std::size_t
#include <cstdint> // std::uint16_t
#include <chrono>
#include <iostream>
#include <memory>
#include <numeric>
#include <random> // std::random_device, std::mt19937, std::uniform_real_distribution
#include <iomanip>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/Round.hpp"
#include "aidge/utils/TensorUtils.hpp"
namespace Aidge {
TEST_CASE("[cpu/operator] Round_Test", "[Round][CPU]") {
constexpr std::uint16_t NBTRIALS = 15;
// Create a random number generator
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<float> valueDist(-15, 15);
std::uniform_int_distribution<std::size_t> dimSizeDist(std::size_t(2), std::size_t(5));
std::uniform_int_distribution<std::size_t> nbDimsDist(std::size_t(1), std::size_t(3));
// Create BitShift Operator
std::shared_ptr<Node> myRound = Round();
auto op = std::static_pointer_cast<OperatorTensor>(myRound-> getOperator());
op->setDataType(DataType::Float32);
op->setBackend("cpu");
// Create 2 input Tensors
std::shared_ptr<Tensor> T0 = std::make_shared<Tensor>();
op->associateInput(0,T0);
T0->setDataType(DataType::Float32);
T0->setBackend("cpu");
// Create results Tensor
std::shared_ptr<Tensor> Tres = std::make_shared<Tensor>();
Tres->setDataType(DataType::Float32);
Tres->setBackend("cpu");
// To measure execution time of 'Round_Op::forward()' member function call
std::chrono::time_point<std::chrono::system_clock> start;
std::chrono::time_point<std::chrono::system_clock> end;
std::chrono::duration<double, std::micro> duration{};
SECTION("Round [Forward]") {
SECTION("Test Forward Kernel") {
std::size_t number_of_operation = 0;
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
// generate 2 random Tensors
const std::size_t nbDims = nbDimsDist(gen);
std::vector<std::size_t> dims;
for (std::size_t i = 0; i < nbDims; ++i) {
dims.push_back(dimSizeDist(gen));
}
const std::size_t nb_elements = std::accumulate(dims.cbegin(), dims.cend(), std::size_t(1), std::multiplies<std::size_t>());
number_of_operation += nb_elements;
// without broadcasting
float* array0 = new float[nb_elements];
float* result = new float[nb_elements];
for (std::size_t i = 0; i < nb_elements; ++i) {
array0[i] = valueDist(gen);
result[i] = std::nearbyint(array0[i]);
}
// input0
T0->resize(dims);
T0 -> getImpl() -> setRawPtr(array0, nb_elements);
// results
Tres->resize(dims);
Tres -> getImpl() -> setRawPtr(result, nb_elements);
op->forwardDims();
start = std::chrono::system_clock::now();
myRound->forward();
end = std::chrono::system_clock::now();
duration += std::chrono::duration_cast<std::chrono::microseconds>(end - start);
bool is_eq = approxEq<float>(*(op->getOutput(0)), *Tres);
auto Output = *(op->getOutput(0));
auto prt = Output.getImpl()->rawPtr();
REQUIRE(is_eq);
delete[] array0;
delete[] result;
}
std::cout << "number of elements over time spent: " << (number_of_operation / duration.count())<< std::endl;
std::cout << "total time: " << duration.count() << "μs" << std::endl;
}
}
} // namespace Aidge
}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment