Skip to content
Snippets Groups Projects
Commit be5d146b authored by Houssem ROUIS's avatar Houssem ROUIS Committed by Maxence Naud
Browse files

add broadcasting for Sub operator

parent 325b6153
No related branches found
No related tags found
2 merge requests!50version 0.2.0,!30add broadcasting for Arithmetic operators
...@@ -25,10 +25,10 @@ namespace Aidge { ...@@ -25,10 +25,10 @@ namespace Aidge {
// compute kernel registry for forward and backward // compute kernel registry for forward and backward
class SubImplForward_cpu class SubImplForward_cpu
: public Registrable<SubImplForward_cpu, std::tuple<DataType, DataType, DataType>, void(const std::size_t, const std::size_t, const void*, const void*,void*)> { : public Registrable<SubImplForward_cpu, std::tuple<DataType, DataType, DataType>, void(const std::vector<std::size_t>&, const std::vector<std::size_t>&, const std::vector<std::size_t>&, const void*, const void*,void*)> {
}; };
class SubImplBackward_cpu class SubImplBackward_cpu
: public Registrable<SubImplBackward_cpu, std::tuple<DataType, DataType, DataType>, void(const std::size_t, const std::size_t, const void*, const void*, void*)> { : public Registrable<SubImplBackward_cpu, std::tuple<DataType, DataType, DataType>, void(const std::vector<std::size_t>&, const std::vector<std::size_t>&, const std::vector<std::size_t>&, const void*, const void*, void*)> {
}; };
class SubImpl_cpu : public OperatorImpl { class SubImpl_cpu : public OperatorImpl {
......
...@@ -14,39 +14,35 @@ ...@@ -14,39 +14,35 @@
#include "aidge/utils/Registrar.hpp" #include "aidge/utils/Registrar.hpp"
#include "aidge/backend/cpu/data/Broadcasting.hpp"
#include "aidge/backend/cpu/operator/SubImpl.hpp" #include "aidge/backend/cpu/operator/SubImpl.hpp"
namespace Aidge { namespace Aidge {
template <class I1, class I2, class O> template <class I1, class I2, class O>
void SubImpl_cpu_forward_kernel(std::size_t input1Length, void SubImpl_cpu_forward_kernel(const std::vector<std::size_t>& input1Dims,
std::size_t input2Length, const std::vector<std::size_t>& input2Dims,
const void* input1_, const std::vector<std::size_t>& outputDims,
const void* input2_, const void* input1_,
void* output_) { const void* input2_,
void* output_) {
const I1* input_1 = static_cast<const I1*>(input1_); const I1* input_1 = static_cast<const I1*>(input1_);
const I2* input_2 = static_cast<const I2*>(input2_); const I2* input_2 = static_cast<const I2*>(input2_);
O* output = static_cast<O*>(output_); O* output = static_cast<O*>(output_);
if (input2Length == input1Length) size_t totalElements = 1;
{ for (size_t dimSize : outputDims) {
for (std::size_t i = 0; i < input1Length; ++i) { totalElements *= dimSize;
output[i] = input_1[i] - input_2[i];
}
}
else if (input2Length == 1)
{
for (std::size_t i = 0; i < input1Length; ++i) {
output[i] = input_1[i] - input_2[0];
}
}
else // input_2 is 1d and of size the number of channels of input_1
{
for (std::size_t i = 0; i < input1Length; ++i) {
std::size_t channelIdx = i % input2Length;
output[i] = input_1[i] - input_2[channelIdx];
}
} }
for (std::size_t oIndex = 0; oIndex < totalElements; ++oIndex)
{
std::vector<size_t> indexes = getMultiDimIndices(outputDims, oIndex);
std::size_t idx1 = getFlattenedIndex(input1Dims, indexes);
std::size_t idx2 = getFlattenedIndex(input2Dims, indexes);
output[oIndex] = input_1[idx1] - input_2[idx2];
}
} }
namespace { namespace {
......
...@@ -17,6 +17,7 @@ ...@@ -17,6 +17,7 @@
#include "aidge/operator/Sub.hpp" #include "aidge/operator/Sub.hpp"
#include "aidge/utils/Types.h" #include "aidge/utils/Types.h"
#include "aidge/backend/cpu/data/Broadcasting.hpp"
#include "aidge/backend/cpu/data/GetCPUPtr.h" #include "aidge/backend/cpu/data/GetCPUPtr.h"
#include "aidge/backend/cpu/operator/SubImpl.hpp" #include "aidge/backend/cpu/operator/SubImpl.hpp"
...@@ -35,9 +36,15 @@ void Aidge::SubImpl_cpu::forward() { ...@@ -35,9 +36,15 @@ void Aidge::SubImpl_cpu::forward() {
std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(), std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dataType(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
const std::vector<std::size_t> inputDims0 = getBroadcastedDims(std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims());
const std::vector<std::size_t> inputDims1 = getBroadcastedDims(std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dims());
// Call kernel // Call kernel
kernelFunc(std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size(), kernelFunc(inputDims0,
std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->size(), inputDims1,
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
getCPUPtr(mOp.getRawInput(0)), getCPUPtr(mOp.getRawInput(0)),
getCPUPtr(mOp.getRawInput(1)), getCPUPtr(mOp.getRawInput(1)),
getCPUPtr(mOp.getRawOutput(0))); getCPUPtr(mOp.getRawOutput(0)));
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment