Skip to content
Snippets Groups Projects
Commit 890f2cfa authored by Maxence Naud's avatar Maxence Naud Committed by Maxence Naud
Browse files

[Add] new test cases for conv[dw] and upd 2D kernels

parent 9349f51e
No related branches found
No related tags found
1 merge request!101Upd 2D Conv[DepthWise] kernels
Pipeline #58260 passed
This commit is part of merge request !101. Comments created here will be created in the context of that merge request.
...@@ -157,51 +157,66 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& stri ...@@ -157,51 +157,66 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& stri
for (std::size_t ch = 0; ch < inputDims[1]; ++ch) { for (std::size_t ch = 0; ch < inputDims[1]; ++ch) {
B biasVal = (biases != nullptr) ? biases[ch] : B(0); B biasVal = (biases != nullptr) ? biases[ch] : B(0);
std::fill(output, output + outChannels_s, biasVal);
const std::size_t iIndex = (ch + batch*inputDims[1]) * inputDims[2] * inputDims[3]; std::size_t iIndex = (ch + batch*inputDims[1]) * inputDims[2] * inputDims[3];
const std::size_t wIndex = ch * 9; const std::size_t wIndex = ch * 9;
for (std::size_t ox = 0; ox < oxSize; ++ox) { if (strideDims[0] == 1 && strideDims[1]==1) {
for (std::size_t oy = 0; oy < oySize; ++oy) { for (std::size_t ox = 0, oIndex = 0; ox < oxSize; ++ox, oIndex+=oySize, iIndex-=inputDims[3]) {
const std::size_t oIndexFull = ox*oySize + oy; for (std::size_t oy = 0; oy < oySize; ++oy) {
const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); output[oIndex + oy] = biasVal + weights[wIndex+0]*input[iIndex+oy]+weights[wIndex+1]*input[iIndex+oy+1]+weights[wIndex+2]*input[iIndex+oy+2];
const signedsize iy = static_cast<signedsize>(oy * strideDims[1]); }
iIndex+=inputDims[3];
output[oIndexFull] += (weights[wIndex + 0*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+0)] + for (std::size_t oy = 0; oy < oySize; ++oy) {
weights[wIndex + 0*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+1)] + output[oIndex + oy] += weights[wIndex+3]*input[iIndex+oy]+weights[wIndex+4]*input[iIndex+oy+1]+weights[wIndex+5]*input[iIndex+oy+2];
weights[wIndex + 0*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+2)] + }
weights[wIndex + 1*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+0)] + iIndex+=inputDims[3];
weights[wIndex + 1*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+1)] + for (std::size_t oy = 0; oy < oySize; ++oy) {
weights[wIndex + 1*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+2)] + output[oIndex + oy] += weights[wIndex+6]*input[iIndex+oy]+weights[wIndex+7]*input[iIndex+oy+1]+weights[wIndex+8]*input[iIndex+oy+2];
weights[wIndex + 2*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+0)] + }
weights[wIndex + 2*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+1)] + }
weights[wIndex + 2*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+2)]); } else {
for (std::size_t ox = 0, oIndex = 0; ox < oxSize; ++ox, oIndex+=oySize, iIndex-=strideDims[0]*inputDims[3]) {
for (std::size_t oy = 0; oy < oySize; ++oy) {
output[oIndex + oy] += weights[wIndex+0]*input[iIndex+oy]+weights[wIndex+1]*input[iIndex+oy+strideDims[0]]+weights[wIndex+2]*input[iIndex+oy+strideDims[0]*2];
}
iIndex+=strideDims[0]*inputDims[3];
for (std::size_t oy = 0; oy < oySize; ++oy) {
output[oIndex + oy] += weights[wIndex+3]*input[iIndex+oy]+weights[wIndex+4]*input[iIndex+oy+strideDims[0]]+weights[wIndex+5]*input[iIndex+oy+strideDims[0]*2];
}
iIndex+=strideDims[0]*inputDims[3];
for (std::size_t oy = 0; oy < oySize; ++oy) {
output[oIndex + oy] += weights[wIndex+6]*input[iIndex+oy]+weights[wIndex+7]*input[iIndex+oy+strideDims[0]]+weights[wIndex+8]*input[iIndex+oy+strideDims[0]*2];
}
} }
} }
output += outChannels_s; output += outChannels_s;
} }
} }
} else if (dilated_kernel_x == 1 && dilated_kernel_y == 1) { } else if (dilated_kernel_x == 1 && dilated_kernel_y == 1) {
std::size_t index = 0;
for (std::size_t batch = 0; batch < inputDims[0]; ++batch) { for (std::size_t batch = 0; batch < inputDims[0]; ++batch) {
for (std::size_t ch = 0; ch < inputDims[1]; ++ch) { for (std::size_t ch = 0; ch < inputDims[1]; ++ch) {
B biasVal = (biases != nullptr) ? biases[ch] : B(0); B biasVal = (biases != nullptr) ? biases[ch] : B(0);
std::fill(output, output + outChannels_s, biasVal);
const std::size_t iIndex = (ch + batch*inputDims[1]) * inputDims[2] * inputDims[3]; const std::size_t iIndex = (ch + batch*inputDims[1]) * inputDims[2] * inputDims[3];
const std::size_t wIndex = ch; const std::size_t wIndex = ch;
for (std::size_t ox = 0; ox < oxSize; ++ox) {
for (std::size_t oy = 0; oy < oySize; ++oy) {
const std::size_t oIndexFull = ox*oySize + oy; if (strideDims[0] == 1 && strideDims[1] == 1) {
const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); for (; index < iIndex + oxSize*oySize; ++index) {
const signedsize iy = static_cast<signedsize>(oy * strideDims[1]); output[index] = biasVal + weights[wIndex] * input[index];
output[oIndexFull] += weights[wIndex] * input[iIndex + static_cast<std::size_t>(ix)*inputDims[3] + static_cast<std::size_t>(iy)]; }
} else {
std::size_t oIndex = (ch + batch*inputDims[1]) * oxSize * oySize;
for (std::size_t ox = 0; ox < oxSize; ++ox, oIndex+=oySize) {
index = iIndex + strideDims[0]*inputDims[3];
for (std::size_t oy = 0, iy = 0; oy < oySize; ++oy, iy+=strideDims[1]) {
output[oIndex + oy] += weights[wIndex]*input[index+iy];
}
} }
} }
} }
output += outChannels_s;
} }
} else { } else {
for (std::size_t batch = 0; batch < inputDims[0]; ++batch) { for (std::size_t batch = 0; batch < inputDims[0]; ++batch) {
......
...@@ -167,23 +167,35 @@ void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims, ...@@ -167,23 +167,35 @@ void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims,
B biasVal = (biases != nullptr) ? biases[outCh] : B(0); B biasVal = (biases != nullptr) ? biases[outCh] : B(0);
std::fill(output, output+outChannels_s, biasVal); std::fill(output, output+outChannels_s, biasVal);
for (std::size_t inCh = 0; inCh < inputDims[1]; ++inCh) { for (std::size_t inCh = 0; inCh < inputDims[1]; ++inCh) {
const std::size_t iIndex = (inCh + batch*inputDims[1]) * inputDims[2] * inputDims[3]; std::size_t iIndex = (inCh + batch*inputDims[1]) * inputDims[2] * inputDims[3];
const std::size_t wIndex = (inCh + outCh*inputDims[1]) * 9; const std::size_t wIndex = (inCh + outCh*inputDims[1]) * 9;
for (std::size_t ox = 0; ox < oxSize; ++ox) { if (strideDims[0] == 1 && strideDims[1]==1) {
for (std::size_t oy = 0; oy < oySize; ++oy) { for (std::size_t ox = 0, oIndex = 0; ox < oxSize; ++ox, oIndex+=oySize, iIndex-=inputDims[3]) {
const std::size_t oIndexFull = ox*oySize + oy; for (std::size_t oy = 0; oy < oySize; ++oy) {
const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); output[oIndex + oy] += weights[wIndex+0]*input[iIndex+oy]+weights[wIndex+1]*input[iIndex+oy+1]+weights[wIndex+2]*input[iIndex+oy+2];
const signedsize iy = static_cast<signedsize>(oy * strideDims[1]); }
iIndex+=inputDims[3];
output[oIndexFull] += (weights[wIndex + 0*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+0)] + for (std::size_t oy = 0; oy < oySize; ++oy) {
weights[wIndex + 0*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+1)] + output[oIndex + oy] += weights[wIndex+3]*input[iIndex+oy]+weights[wIndex+4]*input[iIndex+oy+1]+weights[wIndex+5]*input[iIndex+oy+2];
weights[wIndex + 0*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+0)*inputDims[3] + static_cast<std::size_t>(iy+2)] + }
weights[wIndex + 1*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+0)] + iIndex+=inputDims[3];
weights[wIndex + 1*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+1)] + for (std::size_t oy = 0; oy < oySize; ++oy) {
weights[wIndex + 1*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+1)*inputDims[3] + static_cast<std::size_t>(iy+2)] + output[oIndex + oy] += weights[wIndex+6]*input[iIndex+oy]+weights[wIndex+7]*input[iIndex+oy+1]+weights[wIndex+8]*input[iIndex+oy+2];
weights[wIndex + 2*kernelDims[1] + 0] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+0)] + }
weights[wIndex + 2*kernelDims[1] + 1] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+1)] + }
weights[wIndex + 2*kernelDims[1] + 2] * input[iIndex + static_cast<std::size_t>(ix+2)*inputDims[3] + static_cast<std::size_t>(iy+2)]); } else {
for (std::size_t ox = 0, oIndex = 0; ox < oxSize; ++ox, oIndex+=oySize, iIndex-=strideDims[0]*inputDims[3]) {
for (std::size_t oy = 0; oy < oySize; ++oy) {
output[oIndex + oy] += weights[wIndex+0]*input[iIndex+oy]+weights[wIndex+1]*input[iIndex+oy+strideDims[0]]+weights[wIndex+2]*input[iIndex+oy+strideDims[0]*2];
}
iIndex+=strideDims[0]*inputDims[3];
for (std::size_t oy = 0; oy < oySize; ++oy) {
output[oIndex + oy] += weights[wIndex+3]*input[iIndex+oy]+weights[wIndex+4]*input[iIndex+oy+strideDims[0]]+weights[wIndex+5]*input[iIndex+oy+strideDims[0]*2];
}
iIndex+=strideDims[0]*inputDims[3];
for (std::size_t oy = 0; oy < oySize; ++oy) {
output[oIndex + oy] += weights[wIndex+6]*input[iIndex+oy]+weights[wIndex+7]*input[iIndex+oy+strideDims[0]]+weights[wIndex+8]*input[iIndex+oy+strideDims[0]*2];
}
} }
} }
} }
...@@ -197,15 +209,17 @@ void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims, ...@@ -197,15 +209,17 @@ void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims,
B biasVal = (biases != nullptr) ? biases[outCh] : B(0); B biasVal = (biases != nullptr) ? biases[outCh] : B(0);
std::fill(output, output+outChannels_s, biasVal); std::fill(output, output+outChannels_s, biasVal);
for (std::size_t inCh = 0; inCh < inputDims[1]; ++inCh) { for (std::size_t inCh = 0; inCh < inputDims[1]; ++inCh) {
const std::size_t iIndex = (inCh + batch*inputDims[1]) * inputDims[2] * inputDims[3]; std::size_t iIndex = (inCh + batch*inputDims[1]) * inputDims[2] * inputDims[3];
const std::size_t wIndex = (inCh + outCh*inputDims[1]); const std::size_t wIndex = (inCh + outCh*inputDims[1]);
for (std::size_t ox = 0; ox < oxSize; ++ox) { if (strideDims[0] == 1 && strideDims[1] == 1) {
for (std::size_t oy = 0; oy < oySize; ++oy) { for (std::size_t oIndex = 0; oIndex < oxSize*oySize; ++oIndex, ++iIndex) {
const std::size_t oIndexFull = ox*oySize + oy; output[oIndex] += weights[wIndex] * input[iIndex];
const signedsize ix = static_cast<signedsize>(ox * strideDims[0]); }
const signedsize iy = static_cast<signedsize>(oy * strideDims[1]); } else {
for (std::size_t ox = 0, oIndex = 0; ox < oxSize; ++ox, oIndex+=oySize, iIndex+=inputDims[3]*strideDims[0]) {
output[oIndexFull] += weights[wIndex] * input[iIndex + static_cast<std::size_t>(ix)*inputDims[3] + static_cast<std::size_t>(iy)]; for (std::size_t oy = 0, iy = 0; oy < oySize; ++oy, iy+=strideDims[1]) {
output[oIndex + oy] += weights[wIndex+0]*input[iIndex+iy];
}
} }
} }
} }
...@@ -219,18 +233,19 @@ void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims, ...@@ -219,18 +233,19 @@ void ConvImpl2D_cpu_forward_kernel(const std::array<DimSize_t, 2>& strideDims,
B biasVal = (biases != nullptr) ? biases[outCh] : B(0); B biasVal = (biases != nullptr) ? biases[outCh] : B(0);
std::fill(output, output+outChannels_s, biasVal); std::fill(output, output+outChannels_s, biasVal);
for (std::size_t inCh = 0; inCh < inputDims[1]; ++inCh) { for (std::size_t inCh = 0; inCh < inputDims[1]; ++inCh) {
const std::size_t iIndex = (inCh + batch*inputDims[1]) * inputDims[2] * inputDims[3]; std::size_t iIndex_channel = (inCh + batch*inputDims[1]) * inputDims[2] * inputDims[3];
const std::size_t wIndex = (inCh + outCh*inputDims[1]) * kernelDims[0] * kernelDims[1]; const std::size_t wIndex = (inCh + outCh*inputDims[1]) * kernelDims[0] * kernelDims[1];
for (std::size_t ox = 0; ox < oxSize; ++ox) {
for (std::size_t oy = 0; oy < oySize; ++oy) {
const std::size_t oIndexFull = ox*oySize + oy;
const signedsize ix = static_cast<signedsize>(ox * strideDims[0]);
const signedsize iy = static_cast<signedsize>(oy * strideDims[1]);
for (std::size_t sx = 0; sx*dilationDims[0] < dilated_kernel_x; ++sx) { // loop over each ouput line
for (std::size_t sy = 0; sy*dilationDims[1] < dilated_kernel_y; ++sy) { for (std::size_t ox = 0, oIndex = 0; ox < oxSize; ++ox, oIndex+=oySize, iIndex_channel+=inputDims[3]*strideDims[0]) {
output[oIndexFull] += weights[wIndex + sx*kernelDims[1] + sy] * // loop over associated input line
input[iIndex + static_cast<std::size_t>(ix+static_cast<signedsize>(sx*dilationDims[0]))*inputDims[3] + static_cast<std::size_t>(iy+static_cast<signedsize>(sy*dilationDims[1]))]; for (std::size_t ky = 0, ix = 0; ky < kernelDims[0]; ++ky, ix += inputDims[3]*dilationDims[0]) {
// loop over the entire line
for (std::size_t oy = 0, iy = 0; oy < oySize; ++oy, iy+=strideDims[1]) {
const std::size_t iIndex = iIndex_channel + ix + iy;
// loop over elements assosicated with one output
for (std::size_t kx = 0; kx < kernelDims[0]; ++kx) {
output[oIndex + oy] += weights[wIndex+kernelDims[0]*ky+kx]*input[iIndex+kx*dilationDims[1]];
} }
} }
} }
......
...@@ -11,144 +11,219 @@ ...@@ -11,144 +11,219 @@
#include <catch2/catch_test_macros.hpp> #include <catch2/catch_test_macros.hpp>
#include <memory> #include <memory>
#include <vector>
#include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp"
#include "aidge/backend/cpu/operator/ConvDepthWiseImpl_kernels.hpp"
#include "aidge/data/Tensor.hpp" #include "aidge/data/Tensor.hpp"
#include "aidge/operator/ConvDepthWise.hpp" #include "aidge/operator/ConvDepthWise.hpp"
#include "aidge/utils/TensorUtils.hpp"
#include "aidge/backend/cpu.hpp"
using namespace Aidge; using namespace Aidge;
TEST_CASE("[cpu/operator] ConvDepthWise(forward)", "[ConvDepthWise][CPU]") { TEST_CASE("[cpu/operator] ConvDepthWise(forward)", "[ConvDepthWise][CPU]") {
std::shared_ptr<Node> myCDW = ConvDepthWise(4, {3,3}, "mycdw"); SECTION("k[3,3]") {
auto op = std::static_pointer_cast<OperatorTensor>(myCDW -> getOperator()); std::shared_ptr<Node> myCDW = ConvDepthWise(4, {3,3}, "mycdw");
std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array4D<int,4,1,3,3> { auto op = std::static_pointer_cast<OperatorTensor>(myCDW -> getOperator());
{ std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array4D<int,4,1,3,3> {
{{
{ 0, 1, 2},
{ 3, 4, 5},
{ 6, 7, 8}
}},
{{
{ 27, 28, 29},
{ 30, 31, 32},
{ 33, 34, 35}
}},
{{
{ 54, 55, 56},
{ 57, 58, 59},
{ 60, 61, 62}
}},
{{
{ 81, 82, 83},
{ 84, 85, 86},
{ 87, 88, 89}
}}
}
});
std::shared_ptr<Tensor> myBias = std::make_shared<Tensor>(Array1D<int,4> {{7,0,9,0}});
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array4D<int,2,4,5,5> { //NCHW
{
{
{{ 0, 1, 2, 3, 4},
{ 5, 6, 7, 8, 9},
{ 10, 11, 12, 13, 14},
{ 15, 16, 17, 18, 19},
{ 20, 21, 22, 23, 24}},
{{ 25, 26, 27, 28, 29},
{ 30, 31, 32, 33, 34},
{ 35, 36, 37, 38, 39},
{ 40, 41, 42, 43, 44},
{ 45, 46, 47, 48, 49}},
{{ 50, 51, 52, 53, 54},
{ 55, 56, 57, 58, 59},
{ 60, 61, 62, 63, 64},
{ 65, 66, 67, 68, 69},
{ 70, 71, 72, 73, 74}},
{{ 75, 76, 77, 78, 79},
{ 80, 81, 82, 83, 84},
{ 85, 86, 87, 88, 89},
{ 90, 91, 92, 93, 94},
{ 95, 96, 97, 98, 99}}
},
{ {
{{100, 101, 102, 103, 104}, {{
{105, 106, 107, 108, 109}, { 0, 1, 2},
{110, 111, 112, 113, 114}, { 3, 4, 5},
{115, 116, 117, 118, 119}, { 6, 7, 8}
{120, 121, 122, 123, 124}},
}},
{{125, 126, 127, 128, 129}, {{
{130, 131, 132, 133, 134}, { 27, 28, 29},
{135, 136, 137, 138, 139}, { 30, 31, 32},
{140, 141, 142, 143, 144}, { 33, 34, 35}
{145, 146, 147, 148, 149}},
}},
{{150, 151, 152, 153, 154}, {{
{155, 156, 157, 158, 159}, { 54, 55, 56},
{160, 161, 162, 163, 164}, { 57, 58, 59},
{165, 166, 167, 168, 169}, { 60, 61, 62}
{170, 171, 172, 173, 174}}, }},
{{
{{175, 176, 177, 178, 179}, { 81, 82, 83},
{180, 181, 182, 183, 184}, { 84, 85, 86},
{185, 186, 187, 188, 189}, { 87, 88, 89}
{190, 191, 192, 193, 194}, }}
{195, 196, 197, 198, 199}}
} }
} });
}); std::shared_ptr<Tensor> myBias = std::make_shared<Tensor>(Array1D<int,4> {{7,0,9,0}});
std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<int,2,4,3,3> { std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array4D<int,2,4,5,5> { //NCHW
{
{ {
{{ 319, 355, 391}, {
{ 499, 535, 571}, {{ 0, 1, 2, 3, 4},
{ 679, 715, 751}}, { 5, 6, 7, 8, 9},
{ 10, 11, 12, 13, 14},
{{ 8745, 9024, 9303}, { 15, 16, 17, 18, 19},
{ 10140, 10419, 10698}, { 20, 21, 22, 23, 24}},
{ 11535, 11814, 12093}},
{{ 25, 26, 27, 28, 29},
{{ 29337, 29859, 30381}, { 30, 31, 32, 33, 34},
{ 31947, 32469, 32991}, { 35, 36, 37, 38, 39},
{ 34557, 35079, 35601}}, { 40, 41, 42, 43, 44},
{ 45, 46, 47, 48, 49}},
{{ 62061, 62826, 63591},
{ 65886, 66651, 67416}, {{ 50, 51, 52, 53, 54},
{ 69711, 70476, 71241}} { 55, 56, 57, 58, 59},
}, { 60, 61, 62, 63, 64},
{ 65, 66, 67, 68, 69},
{ 70, 71, 72, 73, 74}},
{{ 75, 76, 77, 78, 79},
{ 80, 81, 82, 83, 84},
{ 85, 86, 87, 88, 89},
{ 90, 91, 92, 93, 94},
{ 95, 96, 97, 98, 99}}
},
{
{{100, 101, 102, 103, 104},
{105, 106, 107, 108, 109},
{110, 111, 112, 113, 114},
{115, 116, 117, 118, 119},
{120, 121, 122, 123, 124}},
{{125, 126, 127, 128, 129},
{130, 131, 132, 133, 134},
{135, 136, 137, 138, 139},
{140, 141, 142, 143, 144},
{145, 146, 147, 148, 149}},
{{150, 151, 152, 153, 154},
{155, 156, 157, 158, 159},
{160, 161, 162, 163, 164},
{165, 166, 167, 168, 169},
{170, 171, 172, 173, 174}},
{{175, 176, 177, 178, 179},
{180, 181, 182, 183, 184},
{185, 186, 187, 188, 189},
{190, 191, 192, 193, 194},
{195, 196, 197, 198, 199}}
}
}
});
std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<int,2,4,3,3> {
{ {
{{ 3919, 3955, 3991}, {
{ 4099, 4135, 4171}, {{ 319, 355, 391},
{ 4279, 4315, 4351}}, { 499, 535, 571},
{ 679, 715, 751}},
{{ 36645, 36924, 37203},
{ 38040, 38319, 38598}, {{ 8745, 9024, 9303},
{ 39435, 39714, 39993}}, { 10140, 10419, 10698},
{ 11535, 11814, 12093}},
{{ 81537, 82059, 82581},
{ 84147, 84669, 85191}, {{ 29337, 29859, 30381},
{ 86757, 87279, 87801}}, { 31947, 32469, 32991},
{ 34557, 35079, 35601}},
{{138561, 139326, 140091},
{142386, 143151, 143916}, {{ 62061, 62826, 63591},
{146211, 146976, 147741}} { 65886, 66651, 67416},
{ 69711, 70476, 71241}}
},
{
{{ 3919, 3955, 3991},
{ 4099, 4135, 4171},
{ 4279, 4315, 4351}},
{{ 36645, 36924, 37203},
{ 38040, 38319, 38598},
{ 39435, 39714, 39993}},
{{ 81537, 82059, 82581},
{ 84147, 84669, 85191},
{ 86757, 87279, 87801}},
{{138561, 139326, 140091},
{142386, 143151, 143916},
{146211, 146976, 147741}}
}
} }
} });
}); op -> associateInput(0, myInput);
op -> associateInput(0, myInput); op -> associateInput(1, myWeights);
op -> associateInput(1, myWeights); op -> associateInput(2, myBias);
op -> associateInput(2, myBias); op->setDataType(DataType::Int32);
op->setDataType(DataType::Int32); op->setBackend("cpu");
op->setBackend("cpu"); myCDW -> forward();
myCDW -> forward(); op -> getOutput(0) -> print();
op -> getOutput(0) -> print(); REQUIRE(*(op -> getOutput(0)) == *myOutput);
REQUIRE(*(op -> getOutput(0)) == *myOutput); }
SECTION("point-wise") {
// std::cout << static_cast<Tensor>((*op)["weight"])[0][0][0][0] << std::endl; ConvDepthWise_Op<2> conv_op = ConvDepthWise_Op<2>({1,1});
std::shared_ptr<Tensor> weights = std::make_shared<Tensor>(std::vector<std::size_t>({3,1,1,1}));
weights -> setBackend("cpu");
std::shared_ptr<Tensor> biases = std::make_shared<Tensor>(std::vector<std::size_t>({3}));
biases -> setBackend("cpu");
std::shared_ptr<Tensor> input = std::make_shared<Tensor>(std::vector<std::size_t>({2,3,5,5}));
input -> setBackend("cpu");
std::shared_ptr<Tensor> expected_output = std::make_shared<Tensor>(std::vector<std::size_t>({2,3,5,5}));
expected_output -> setBackend("cpu");
float weighst_array[3] {-0.0045, -0.4223, -0.9452};
weights->getImpl()->setRawPtr(weighst_array, 3);
float biases_array[3] {-0.8595, 0.7062, -0.0062};
biases->getImpl()->setRawPtr(biases_array, 3);
float input_array[2*3*5*5] {
0.6581, 0.2509, 0.2660, 0.8270, 0.8040, 0.3147, 0.5028, 0.2591, 0.8585,
0.7762, 0.9972, 0.0305, 0.1202, 0.2682, 0.9306, 0.7927, 0.1494, 0.0678,
0.5550, 0.4132, 0.4742, 0.6199, 0.1802, 0.6350, 0.2539, 0.5594, 0.0143,
0.8656, 0.7105, 0.1420, 0.2464, 0.7883, 0.5715, 0.7642, 0.5492, 0.6628,
0.4922, 0.7941, 0.8421, 0.7914, 0.0237, 0.8081, 0.0174, 0.6018, 0.7402,
0.3770, 0.8786, 0.3651, 0.5355, 0.4267, 0.4457, 0.6756, 0.9631, 0.0145,
0.4470, 0.5202, 0.2675, 0.5815, 0.3487, 0.3457, 0.7179, 0.0518, 0.1520,
0.0573, 0.9219, 0.3615, 0.0866, 0.5237, 0.4725, 0.2565, 0.8726, 0.6434,
0.6875, 0.2919, 0.3355, 0.1886, 0.1749, 0.0785, 0.4091, 0.1907, 0.4664,
0.2738, 0.4784, 0.7807, 0.0687, 0.3091, 0.4557, 0.2277, 0.2424, 0.8691,
0.1893, 0.2918, 0.5691, 0.1926, 0.2866, 0.0097, 0.5445, 0.5085, 0.1110,
0.7099, 0.8927, 0.6182, 0.2538, 0.8694, 0.7872, 0.3196, 0.0710, 0.2888,
0.0403, 0.1670, 0.6840, 0.7323, 0.4861, 0.3390, 0.1096, 0.5070, 0.3872,
0.7473, 0.6224, 0.6910, 0.7530, 0.0149, 0.0866, 0.9022, 0.5027, 0.3849,
0.5255, 0.1977, 0.0570, 0.9581, 0.5461, 0.4623, 0.0101, 0.2362, 0.5922,
0.8398, 0.1497, 0.5160, 0.2862, 0.5931, 0.9728, 0.1353, 0.7790, 0.9137,
0.9351, 0.4036, 0.7638, 0.3873, 0.0494, 0.7450};
input->getImpl()->setRawPtr(input_array, 2*3*5*5);
float expected_output_array[2*3*5*5] {
-0.8624, -0.8606, -0.8607, -0.8632, -0.8631, -0.8609, -0.8617, -0.8606,
-0.8633, -0.8629, -0.8639, -0.8596, -0.8600, -0.8607, -0.8636, -0.8630,
-0.8601, -0.8598, -0.8620, -0.8613, -0.8616, -0.8622, -0.8603, -0.8623,
-0.8606, 0.4700, 0.7002, 0.3407, 0.4062, 0.6463, 0.6022, 0.3733,
0.4649, 0.3835, 0.4743, 0.4263, 0.4984, 0.3709, 0.3506, 0.3720,
0.6962, 0.3650, 0.6989, 0.4521, 0.3936, 0.5470, 0.3352, 0.5520,
0.4801, 0.5260, -0.4274, -0.6447, -0.9165, -0.0199, -0.4287, -0.4979,
-0.2590, -0.5559, -0.3358, -0.3329, -0.6847, -0.0552, -0.1499, -0.0603,
-0.8776, -0.3479, -0.0881, -0.5011, -0.4528, -0.2486, -0.8309, -0.6143,
-0.6561, -0.2821, -0.3233, -0.8603, -0.8603, -0.8598, -0.8613, -0.8603,
-0.8616, -0.8607, -0.8616, -0.8630, -0.8598, -0.8609, -0.8615, -0.8605,
-0.8606, -0.8634, -0.8603, -0.8608, -0.8620, -0.8603, -0.8608, -0.8595,
-0.8619, -0.8617, -0.8600, -0.8626, 0.3292, 0.4451, 0.5991, 0.3390,
0.3738, 0.5712, 0.6762, 0.5843, 0.6892, 0.6357, 0.4174, 0.3969,
0.5009, 0.5631, 0.6599, 0.4921, 0.5427, 0.3906, 0.4434, 0.4144,
0.3882, 0.6999, 0.6697, 0.3252, 0.4939, -0.3700, -0.5029, -0.1931,
-0.0601, -0.9118, -0.5224, -0.4432, -0.0157, -0.2294, -0.5660, -0.7999,
-0.1477, -0.4939, -0.2767, -0.5668, -0.9257, -0.1341, -0.7425, -0.8698,
-0.8900, -0.3877, -0.7282, -0.3722, -0.0529, -0.7103};
expected_output->getImpl()->setRawPtr(expected_output_array, 2*3*5*5);
conv_op.associateInput(0, input);
conv_op.associateInput(1, weights);
conv_op.associateInput(2, biases);
conv_op.setBackend("cpu");
conv_op.setDataType(DataType::Float32);
conv_op.forwardDims();
conv_op.forward();
conv_op.getOutput(0)->print();
REQUIRE(approxEq<float>(*(conv_op.getOutput(0)),*expected_output, 1e-3f, 1e-4f));
}
} }
\ No newline at end of file
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "aidge/data/Tensor.hpp" #include "aidge/data/Tensor.hpp"
#include "aidge/operator/Conv.hpp" #include "aidge/operator/Conv.hpp"
#include "aidge/utils/TensorUtils.hpp"
#include "aidge/backend/cpu.hpp" #include "aidge/backend/cpu.hpp"
...@@ -153,7 +154,7 @@ TEST_CASE("[cpu/operator] Conv(forward)", "[Conv][CPU]") { ...@@ -153,7 +154,7 @@ TEST_CASE("[cpu/operator] Conv(forward)", "[Conv][CPU]") {
op->setDataType(DataType::Int32); op->setDataType(DataType::Int32);
op->setBackend("cpu"); op->setBackend("cpu");
myConv->forward(); myConv->forward();
// op->getOutput(0)->print(); op->getOutput(0)->print();
REQUIRE(*(op->getOutput(0)) == *myOutput); REQUIRE(*(op->getOutput(0)) == *myOutput);
} }
SECTION("Point-wise") { SECTION("Point-wise") {
...@@ -251,4 +252,147 @@ TEST_CASE("[cpu/operator] Conv(forward)", "[Conv][CPU]") { ...@@ -251,4 +252,147 @@ TEST_CASE("[cpu/operator] Conv(forward)", "[Conv][CPU]") {
REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001);
} }
} }
SECTION("Strided and dilated Conv") {
std::shared_ptr<Node> myConv = Conv(3,4,{3,3}, "myconv", {3,3},{2,2});
auto op = std::static_pointer_cast<OperatorTensor>(myConv -> getOperator());
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array4D<float,2,3,8,8> {
{{{
{0.0107F, 0.5076F, 0.2293F, 0.0486F, 0.7375F, 0.2637F, 0.9615F, 0.9138F},
{0.0678F, 0.5604F, 0.1940F, 0.0287F, 0.1029F, 0.2059F, 0.5058F, 0.9885F},
{0.9904F, 0.2890F, 0.4606F, 0.1055F, 0.9028F, 0.1654F, 0.6499F, 0.4775F},
{0.9499F, 0.4695F, 0.1713F, 0.0731F, 0.4913F, 0.8921F, 0.1782F, 0.1111F},
{0.2479F, 0.4669F, 0.1078F, 0.6153F, 0.0299F, 0.6484F, 0.2397F, 0.1814F},
{0.3779F, 0.9032F, 0.5651F, 0.3896F, 0.8439F, 0.6404F, 0.3813F, 0.0841F},
{0.5566F, 0.8950F, 0.1226F, 0.8881F, 0.9870F, 0.6256F, 0.6387F, 0.0628F},
{0.2857F, 0.0579F, 0.6247F, 0.1286F, 0.0951F, 0.1268F, 0.9510F, 0.3789F}},
{{0.7648F, 0.5340F, 0.1024F, 0.4098F, 0.9958F, 0.7941F, 0.1190F, 0.7328F},
{0.4532F, 0.6598F, 0.9146F, 0.1690F, 0.6041F, 0.7230F, 0.5719F, 0.9282F},
{0.2862F, 0.2329F, 0.7302F, 0.6717F, 0.1983F, 0.1876F, 0.4561F, 0.2126F},
{0.7849F, 0.0239F, 0.7977F, 0.5935F, 0.9958F, 0.4703F, 0.4612F, 0.1627F},
{0.6393F, 0.3544F, 0.8643F, 0.5039F, 0.8087F, 0.6521F, 0.5086F, 0.9331F},
{0.7749F, 0.9798F, 0.6820F, 0.7869F, 0.5144F, 0.2941F, 0.8137F, 0.4561F},
{0.6505F, 0.3974F, 0.6909F, 0.7019F, 0.2729F, 0.4240F, 0.0162F, 0.1536F},
{0.3529F, 0.8821F, 0.1812F, 0.3426F, 0.3472F, 0.0300F, 0.8841F, 0.8088F}},
{{0.5099F, 0.3323F, 0.1488F, 0.3424F, 0.1494F, 0.6225F, 0.8103F, 0.5995F},
{0.9198F, 0.5635F, 0.8908F, 0.9378F, 0.6689F, 0.3176F, 0.3755F, 0.3883F},
{0.0626F, 0.5309F, 0.0307F, 0.3955F, 0.2794F, 0.1420F, 0.4758F, 0.7558F},
{0.6154F, 0.5280F, 0.2318F, 0.3832F, 0.4435F, 0.3490F, 0.4043F, 0.5872F},
{0.3705F, 0.3848F, 0.2182F, 0.8332F, 0.4559F, 0.5310F, 0.4611F, 0.4236F},
{0.6141F, 0.8103F, 0.2260F, 0.9907F, 0.5615F, 0.4520F, 0.6949F, 0.0175F},
{0.3969F, 0.5021F, 0.0970F, 0.9937F, 0.9270F, 0.4302F, 0.2868F, 0.3891F},
{0.8693F, 0.5170F, 0.5348F, 0.2676F, 0.9769F, 0.3356F, 0.9427F, 0.3908F}}
},
{
{{0.4803F, 0.5223F, 0.6395F, 0.8402F, 0.4442F, 0.6377F, 0.7852F, 0.9063F},
{0.0361F, 0.0470F, 0.3104F, 0.6921F, 0.0543F, 0.4490F, 0.9541F, 0.7395F},
{0.3832F, 0.3828F, 0.2236F, 0.2068F, 0.4369F, 0.7443F, 0.6952F, 0.6394F},
{0.5309F, 0.8483F, 0.1991F, 0.9756F, 0.8969F, 0.7284F, 0.4657F, 0.5486F},
{0.8839F, 0.3260F, 0.6892F, 0.4074F, 0.9473F, 0.5526F, 0.4147F, 0.4786F},
{0.9674F, 0.0952F, 0.8379F, 0.2163F, 0.9420F, 0.4046F, 0.1339F, 0.5234F},
{0.4213F, 0.8392F, 0.3184F, 0.4576F, 0.9349F, 0.8267F, 0.0931F, 0.8009F},
{0.5570F, 0.5871F, 0.4175F, 0.5465F, 0.6679F, 0.9224F, 0.0049F, 0.9421F}},
{{0.3739F, 0.6230F, 0.7613F, 0.1337F, 0.8527F, 0.0557F, 0.6424F, 0.8463F},
{0.7179F, 0.5638F, 0.2457F, 0.4579F, 0.0487F, 0.8693F, 0.8216F, 0.0415F},
{0.1724F, 0.5108F, 0.9103F, 0.0850F, 0.0080F, 0.8927F, 0.7706F, 0.3600F},
{0.7751F, 0.8828F, 0.7872F, 0.4541F, 0.3181F, 0.1855F, 0.2486F, 0.0033F},
{0.5558F, 0.3500F, 0.6034F, 0.1763F, 0.7418F, 0.5190F, 0.5147F, 0.4090F},
{0.4476F, 0.1249F, 0.8116F, 0.9091F, 0.1738F, 0.6150F, 0.3285F, 0.3133F},
{0.5657F, 0.4447F, 0.5049F, 0.3425F, 0.7443F, 0.2718F, 0.2466F, 0.5586F},
{0.3684F, 0.7616F, 0.5165F, 0.9621F, 0.2864F, 0.7747F, 0.8110F, 0.7045F}},
{{0.4570F, 0.4577F, 0.0373F, 0.6084F, 0.4632F, 0.3472F, 0.9917F, 0.2011F},
{0.7921F, 0.2202F, 0.9525F, 0.7274F, 0.3357F, 0.0076F, 0.5786F, 0.3034F},
{0.6510F, 0.0798F, 0.2757F, 0.1738F, 0.3046F, 0.2197F, 0.3872F, 0.5650F},
{0.1532F, 0.3204F, 0.6094F, 0.3287F, 0.8903F, 0.9773F, 0.7950F, 0.2845F},
{0.2482F, 0.3395F, 0.8795F, 0.4325F, 0.1395F, 0.2457F, 0.2968F, 0.5424F},
{0.8636F, 0.7426F, 0.2151F, 0.6900F, 0.3938F, 0.0062F, 0.4980F, 0.4098F},
{0.8026F, 0.0464F, 0.2662F, 0.7835F, 0.8444F, 0.0688F, 0.8796F, 0.7625F},
{0.2764F, 0.5341F, 0.1773F, 0.6671F, 0.7555F, 0.5235F, 0.7142F, 0.9423F}}}}
});
std::shared_ptr<Tensor> myBias = std::make_shared<Tensor>(Array1D<float,4> {{ 0.1902F, -0.1789F, -0.0314F, -0.0589F}});
std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array4D<float,4,3,3,3> { //NCHW
{
{
{{ 0.0039F, 0.1098F, -0.0834F},
{-0.0890F, 0.0725F, -0.1178F},
{ 0.1056F, -0.0924F, -0.0574F}},
{{ 0.0070F, -0.0730F, -0.0674F},
{-0.0380F, -0.1025F, -0.0085F},
{-0.1451F, -0.0656F, 0.1137F}},
{{ 0.1020F, 0.1025F, -0.0678F},
{ 0.0028F, 0.1512F, -0.0871F},
{ 0.1563F, -0.1446F, -0.1636F}}
},
{
{{ 0.1472F, 0.0025F, -0.0281F},
{ 0.0350F, 0.0296F, -0.1711F},
{-0.1197F, -0.1198F, -0.1130F}},
{{-0.1492F, 0.1554F, -0.1044F},
{ 0.1203F, -0.1596F, 0.0589F},
{-0.0436F, -0.1876F, -0.0816F}},
{{ 0.1572F, -0.0982F, 0.1293F},
{ 0.1358F, 0.1559F, 0.1322F},
{ 0.0296F, -0.0354F, -0.0632F}}
},
{
{{-0.0941F, -0.0479F, 0.0908F},
{-0.1319F, -0.1333F, 0.1223F},
{-0.1098F, 0.1924F, 0.1075F}},
{{ 0.1796F, 0.0213F, 0.0626F},
{ 0.0275F, 0.1883F, -0.0818F},
{ 0.0363F, 0.0684F, 0.1094F}},
{{ 0.1131F, 0.1258F, -0.0558F},
{ 0.1498F, 0.0322F, -0.0186F},
{-0.1801F, -0.0358F, 0.1727F}}
},
{
{{-0.1500F, -0.0554F, -0.0994F},
{-0.0818F, -0.1223F, 0.1365F},
{ 0.1281F, 0.1507F, -0.0890F}},
{{-0.0444F, -0.1071F, -0.1632F},
{ 0.0757F, -0.1235F, 0.0408F},
{ 0.0401F, -0.1914F, 0.1772F}},
{{-0.0714F, 0.1582F, -0.0065F},
{-0.0119F, 0.1375F, -0.0727F},
{-0.1532F, -0.1826F, -0.0417F}}
}
}
});
std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array4D<float,2,4,2,2> {
{
{
{{-0.2174F, -0.0778F},
{-0.2584F, 0.2303F}},
{{-0.7686F, -0.3879F},
{-0.1775F, 0.0119F}},
{{ 0.5180F, 0.5087F},
{ 0.5398F, 0.3476F}},
{{-0.5258F, -0.3128F},
{-0.6673F, -0.1827F}}
},
{
{{-0.1902F, -0.0467F},
{-0.3327F, -0.1701F}},
{{-0.5505F, -0.4875F},
{-0.4119F, -0.5726F}},
{{ 0.5777F, 0.4428F},
{ 0.6121F, 0.7221F}},
{{-0.6009F, -0.6335F},
{-0.5159F, -0.3353F}}
}
}
});
op->associateInput(0,myInput);
op->associateInput(1,myWeights);
op->associateInput(2,myBias);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
op->forwardDims();
myConv->forward();
op->getOutput(0)->print();
REQUIRE(approxEq<float>(*(op->getOutput(0)),*myOutput, 1e-3f, 1e-4f));
}
} }
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment