Skip to content
Snippets Groups Projects
Commit 7c11b111 authored by Maxence Naud's avatar Maxence Naud
Browse files

Merge branch 'remove_unused_warning' into 'master'

Remove unused warning and add const

See merge request aidge/aidge_cpu!1
parents e697fd4d 73193c4c
No related branches found
No related tags found
No related merge requests found
Showing
with 96 additions and 96 deletions
......@@ -66,7 +66,7 @@ class AddImpl_cpu : public OperatorImpl {
}
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final {
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final {
assert(mOp.getInput(inputIdx) && "requires valid input");
// Requires the whole tensors
......@@ -74,12 +74,12 @@ class AddImpl_cpu : public OperatorImpl {
return std::accumulate(inputDims.begin(), inputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>());
}
NbElts_t getNbRequiredProtected(IOIndex_t inputIdx) const override final {
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final {
// for the direct convolution algorithm, convolutions can be in-place, if there is no padding!
return 0;
}
NbElts_t getRequiredMemory(IOIndex_t outputIdx, const std::vector<DimSize_t>& inputsSize) const override final {
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx, const std::vector<DimSize_t>& inputsSize) const override final {
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
......@@ -87,12 +87,12 @@ class AddImpl_cpu : public OperatorImpl {
return std::accumulate(outputDims.begin(), outputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>());
}
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final {
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final {
assert(inputIdx < mNbConsumedData.size());
return mNbConsumedData[inputIdx];
}
NbElts_t getNbProducedData(IOIndex_t outputIdx) const override final {
NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final {
assert(outputIdx < mNbProducedData.size());
return mNbProducedData[outputIdx];
}
......@@ -119,16 +119,16 @@ class AddImpl_cpu<1> : public OperatorImpl {
}
public:
NbElts_t getNbRequiredData(IOIndex_t /*inputIdx*/) const override final;
NbElts_t getNbRequiredData(const IOIndex_t /*inputIdx*/) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t /*inputIdx*/) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final;
NbElts_t getRequiredMemory(IOIndex_t /*outputIdx*/,
const std::vector<DimSize_t>& /*inputsSize*/) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx,
__attribute__((unused)) const std::vector<DimSize_t> &inputsSize) const override final;
NbElts_t getNbConsumedData(IOIndex_t /*inputIdx*/) const override final;
NbElts_t getNbConsumedData(const IOIndex_t /*inputIdx*/) const override final;
NbElts_t getNbProducedData(IOIndex_t /*outputIdx*/) const override final;
NbElts_t getNbProducedData(const IOIndex_t /*outputIdx*/) const override final;
void forward();
......@@ -150,16 +150,16 @@ class AddImpl_cpu<2> : public OperatorImpl {
}
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(IOIndex_t /*outputIdx*/,
const std::vector<DimSize_t>& /*inputsSize*/) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx,
__attribute__((unused)) const std::vector<DimSize_t>& inputsSize) const override final;
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final;
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(IOIndex_t /*outputIdx*/) const override final;
NbElts_t getNbProducedData(const IOIndex_t /*outputIdx*/) const override final;
void forward();
......@@ -181,15 +181,15 @@ class AddImpl_cpu<3> : public OperatorImpl {
}
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t /*inputIdx*/) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t /*inputIdx*/) const override final;
NbElts_t getRequiredMemory(IOIndex_t outputIdx, const std::vector<DimSize_t>& /*inputsSize*/) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx, const std::vector<DimSize_t>& /*inputsSize*/) const override final;
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final;
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(IOIndex_t outputIdx) const override final;
NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final;
void forward();
......
......@@ -49,11 +49,11 @@ class AvgPoolingImpl2D_cpu : public OperatorImpl {
}
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const override final;
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(IOIndex_t outputIdx) const override final;
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const override final;
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final;
void forward();
......
......@@ -64,11 +64,11 @@ class BatchNormImpl2D_cpu : public OperatorImpl {
}
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const override final;
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(IOIndex_t outputIdx) const override final;
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const override final;
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final;
void forward();
......
......@@ -51,11 +51,11 @@ class ConvDepthWiseImpl2D_cpu : public OperatorImpl {
}
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const override final;
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(IOIndex_t outputIdx) const override final;
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const override final;
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final;
void forward();
......
......@@ -51,11 +51,11 @@ class ConvImpl2D_cpu : public OperatorImpl {
}
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const override final;
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(IOIndex_t outputIdx) const override final;
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const override final;
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final;
void forward();
......
......@@ -45,11 +45,11 @@ class FCImpl_cpu : public OperatorImpl {
static std::unique_ptr<FCImpl_cpu> create(const FC_Op &op) { return std::make_unique<FCImpl_cpu>(op); }
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const override final;
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(IOIndex_t outputIdx) const override final;
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const override final;
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final;
void forward();
......
......@@ -44,11 +44,11 @@ class LeakyReLUImpl_cpu : public OperatorImpl {
}
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(IOIndex_t outputIdx, const std::vector<DimSize_t>& inputsSize) const override final;
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(IOIndex_t outputIdx) const override final;
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx, const std::vector<DimSize_t>& inputsSize) const override final;
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final;
void forward();
......
......@@ -32,11 +32,11 @@ class ProducerImpl_cpu : public OperatorImpl {
}
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const override final;
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(IOIndex_t outputIdx) const override final;
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const override final;
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final;
void forward();
......
......@@ -44,11 +44,11 @@ class ReLUImpl_cpu : public OperatorImpl {
}
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(IOIndex_t outputIdx, const std::vector<DimSize_t>& inputsSize) const override final;
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(IOIndex_t outputIdx) const override final;
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx, const std::vector<DimSize_t>& inputsSize) const override final;
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final;
void forward();
......
......@@ -44,11 +44,11 @@ class SoftmaxImpl_cpu : public OperatorImpl {
}
public:
NbElts_t getNbRequiredData(IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(IOIndex_t outputIdx, const std::vector<DimSize_t>& inputsSize) const override final;
NbElts_t getNbConsumedData(IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(IOIndex_t outputIdx) const override final;
NbElts_t getNbRequiredData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
NbElts_t getRequiredMemory(__attribute__((unused)) const IOIndex_t outputIdx, const std::vector<DimSize_t>& inputsSize) const override final;
NbElts_t getNbConsumedData(const IOIndex_t inputIdx) const override final;
NbElts_t getNbProducedData(const IOIndex_t outputIdx) const override final;
void forward();
......
......@@ -31,12 +31,12 @@ Aidge::NbElts_t Aidge::AddImpl_cpu<1>::getNbRequiredData(Aidge::IOIndex_t /*inpu
return static_cast<int>(std::static_pointer_cast<Tensor>(mOp.getInput(0))->size());
}
Aidge::NbElts_t Aidge::AddImpl_cpu<1>::getNbRequiredProtected(Aidge::IOIndex_t /*inputIdx*/) const {
Aidge::NbElts_t Aidge::AddImpl_cpu<1>::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const {
// for the direct convolution algorithm, convolutions can be in-place, if there is no padding!
return 0;
}
Aidge::NbElts_t Aidge::AddImpl_cpu<1>::getRequiredMemory(Aidge::IOIndex_t /*outputIdx*/, const std::vector<Aidge::DimSize_t>& /*inputsSize*/) const {
Aidge::NbElts_t Aidge::AddImpl_cpu<1>::getRequiredMemory(const Aidge::IOIndex_t /*outputIdx*/, const std::vector<Aidge::DimSize_t>& /*inputsSize*/) const {
// Requires the whole tensors, regardless of available data on inputs
return std::static_pointer_cast<Tensor>(mOp.getOutput(0))->size();
}
......@@ -80,7 +80,7 @@ void Aidge::AddImpl_cpu<1>::backward() {
//////////////////////////////////
Aidge::NbElts_t Aidge::AddImpl_cpu<2>::getNbRequiredData(Aidge::IOIndex_t inputIdx) const {
Aidge::NbElts_t Aidge::AddImpl_cpu<2>::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const {
assert(mOp.getInput(inputIdx) && "requires valid input");
// Requires the whole tensors
......@@ -90,12 +90,12 @@ Aidge::NbElts_t Aidge::AddImpl_cpu<2>::getNbRequiredData(Aidge::IOIndex_t inputI
NbElts_t(1), std::multiplies<NbElts_t>());
}
Aidge::NbElts_t Aidge::AddImpl_cpu<2>::getNbRequiredProtected(Aidge::IOIndex_t /*inputIdx*/) const {
Aidge::NbElts_t Aidge::AddImpl_cpu<2>::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const {
// for the direct convolution algorithm, convolutions can be in-place, if there is no padding!
return 0;
}
Aidge::NbElts_t Aidge::AddImpl_cpu<2>::getRequiredMemory(Aidge::IOIndex_t outputIdx, const std::vector<Aidge::DimSize_t>& /*inputsSize*/) const {
Aidge::NbElts_t Aidge::AddImpl_cpu<2>::getRequiredMemory(const Aidge::IOIndex_t outputIdx, __attribute__((unused)) const std::vector<Aidge::DimSize_t>& inputsSize) const {
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
......@@ -147,7 +147,7 @@ void Aidge::AddImpl_cpu<2>::backward() {
//////////////////////////////////
Aidge::NbElts_t Aidge::AddImpl_cpu<3>::getNbRequiredData(Aidge::IOIndex_t inputIdx) const {
Aidge::NbElts_t Aidge::AddImpl_cpu<3>::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const {
assert(mOp.getInput(inputIdx) && "requires valid input");
// Requires the whole tensors
......@@ -157,12 +157,12 @@ Aidge::NbElts_t Aidge::AddImpl_cpu<3>::getNbRequiredData(Aidge::IOIndex_t inputI
Aidge::NbElts_t(1), std::multiplies<Aidge::NbElts_t>());
}
Aidge::NbElts_t Aidge::AddImpl_cpu<3>::getNbRequiredProtected(Aidge::IOIndex_t /*inputIdx*/) const {
Aidge::NbElts_t Aidge::AddImpl_cpu<3>::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const {
// for the direct convolution algorithm, convolutions can be in-place, if there is no padding!
return 0;
}
Aidge::NbElts_t Aidge::AddImpl_cpu<3>::getRequiredMemory(Aidge::IOIndex_t outputIdx, const std::vector<Aidge::DimSize_t>& /*inputsSize*/) const {
Aidge::NbElts_t Aidge::AddImpl_cpu<3>::getRequiredMemory(const Aidge::IOIndex_t outputIdx, const std::vector<Aidge::DimSize_t>& /*inputsSize*/) const {
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
......
......@@ -20,7 +20,7 @@
#include "aidge/operator/AvgPooling.hpp"
#include "aidge/utils/Types.h"
Aidge::NbElts_t Aidge::AvgPoolingImpl2D_cpu::getNbRequiredData(Aidge::IOIndex_t inputIdx) const {
Aidge::NbElts_t Aidge::AvgPoolingImpl2D_cpu::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const {
assert(mOp.getInput(inputIdx) && "requires valid input");
// Requires the whole tensors
......@@ -35,7 +35,7 @@ Aidge::NbElts_t Aidge::AvgPoolingImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*
return 0;
}
Aidge::NbElts_t Aidge::AvgPoolingImpl2D_cpu::getRequiredMemory(Aidge::IOIndex_t outputIdx,
Aidge::NbElts_t Aidge::AvgPoolingImpl2D_cpu::getRequiredMemory(const Aidge::IOIndex_t outputIdx,
const std::vector<Aidge::DimSize_t> & /*inputsSize*/) const {
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
......
......@@ -20,7 +20,7 @@
#include "aidge/operator/BatchNorm.hpp"
#include "aidge/utils/Types.h"
Aidge::NbElts_t Aidge::BatchNormImpl2D_cpu::getNbRequiredData(Aidge::IOIndex_t inputIdx) const {
Aidge::NbElts_t Aidge::BatchNormImpl2D_cpu::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const {
assert(mOp.getInput(inputIdx) && "requires valid input");
// Requires the whole tensors
......@@ -35,8 +35,8 @@ Aidge::NbElts_t Aidge::BatchNormImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*i
return 0;
}
Aidge::NbElts_t Aidge::BatchNormImpl2D_cpu::getRequiredMemory(Aidge::IOIndex_t outputIdx,
const std::vector<Aidge::DimSize_t> & /*inputsSize*/) const {
Aidge::NbElts_t Aidge::BatchNormImpl2D_cpu::getRequiredMemory(const Aidge::IOIndex_t outputIdx,
const std::vector<Aidge::DimSize_t> &inputsSize) const {
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
......
......@@ -21,7 +21,7 @@
#include "aidge/operator/ConvDepthWise.hpp"
#include "aidge/utils/Types.h"
Aidge::NbElts_t Aidge::ConvDepthWiseImpl2D_cpu::getNbRequiredData(Aidge::IOIndex_t inputIdx) const {
Aidge::NbElts_t Aidge::ConvDepthWiseImpl2D_cpu::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const {
assert(mOp.getInput(inputIdx) && "requires valid input");
// Requires the whole tensors
......@@ -36,8 +36,8 @@ Aidge::NbElts_t Aidge::ConvDepthWiseImpl2D_cpu::getNbRequiredProtected(IOIndex_t
return 0;
}
Aidge::NbElts_t Aidge::ConvDepthWiseImpl2D_cpu::getRequiredMemory(Aidge::IOIndex_t outputIdx,
const std::vector<Aidge::DimSize_t> & /*inputsSize*/) const {
Aidge::NbElts_t Aidge::ConvDepthWiseImpl2D_cpu::getRequiredMemory(const Aidge::IOIndex_t outputIdx,
const std::vector<Aidge::DimSize_t> &inputsSize) const {
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
......
......@@ -21,7 +21,7 @@
#include "aidge/operator/Conv.hpp"
#include "aidge/utils/Types.h"
Aidge::NbElts_t Aidge::ConvImpl2D_cpu::getNbRequiredData(Aidge::IOIndex_t inputIdx) const {
Aidge::NbElts_t Aidge::ConvImpl2D_cpu::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const {
assert(mOp.getInput(inputIdx) && "requires valid input");
// Requires the whole tensors
......@@ -36,8 +36,8 @@ Aidge::NbElts_t Aidge::ConvImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputI
return 0;
}
Aidge::NbElts_t Aidge::ConvImpl2D_cpu::getRequiredMemory(Aidge::IOIndex_t outputIdx,
const std::vector<Aidge::DimSize_t> & /*inputsSize*/) const {
Aidge::NbElts_t Aidge::ConvImpl2D_cpu::getRequiredMemory(const Aidge::IOIndex_t outputIdx,
const std::vector<Aidge::DimSize_t> &inputsSize) const {
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
......
......@@ -20,7 +20,7 @@
#include "aidge/operator/FCImpl_forward_kernels.hpp"
#include "aidge/utils/Types.h"
Aidge::NbElts_t Aidge::FCImpl_cpu::getNbRequiredData(Aidge::IOIndex_t inputIdx) const
Aidge::NbElts_t Aidge::FCImpl_cpu::getNbRequiredData(const Aidge::IOIndex_t inputIdx) const
{
assert(mOp.getInput(inputIdx) && "requires valid input");
......@@ -36,7 +36,7 @@ Aidge::NbElts_t Aidge::FCImpl_cpu::getNbRequiredData(Aidge::IOIndex_t inputIdx)
}
Aidge::NbElts_t
Aidge::FCImpl_cpu::getNbRequiredProtected(Aidge::IOIndex_t /*inputIdx*/) const
Aidge::FCImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const
{
// for the direct convolution algorithm, convolutions can be in-place, if
// there is no padding!
......@@ -44,7 +44,7 @@ Aidge::NbElts_t
}
Aidge::NbElts_t Aidge::FCImpl_cpu::getRequiredMemory(
IOIndex_t outputIdx, const std::vector<DimSize_t> & /*inputsSize*/) const
const IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const
{
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
......
......@@ -33,12 +33,12 @@ Aidge::NbElts_t Aidge::LeakyReLUImpl_cpu::getNbRequiredData(Aidge::IOIndex_t /*i
static_cast<NbElts_t>(1), std::multiplies<NbElts_t>());
}
Aidge::NbElts_t Aidge::LeakyReLUImpl_cpu::getNbRequiredProtected(Aidge::IOIndex_t /*inputIdx*/) const {
Aidge::NbElts_t Aidge::LeakyReLUImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const {
// for the direct convolution algorithm, convolutions can be in-place, if there is no padding!
return 0;
}
Aidge::NbElts_t Aidge::LeakyReLUImpl_cpu::getRequiredMemory(Aidge::IOIndex_t /*outputIdx*/, const std::vector<Aidge::DimSize_t>& /*inputsSize*/) const {
Aidge::NbElts_t Aidge::LeakyReLUImpl_cpu::getRequiredMemory(const Aidge::IOIndex_t outputIdx, const std::vector<Aidge::DimSize_t> &inputsSize) const {
const auto& outputDims = mOp.getOutput(0)->dims();
return std::accumulate(outputDims.begin(), outputDims.end(),
static_cast<NbElts_t>(1), std::multiplies<NbElts_t>());
......
......@@ -42,7 +42,7 @@ std::size_t Aidge::ProducerImpl_cpu::getNbRequiredProtected(
std::size_t Aidge::ProducerImpl_cpu::getRequiredMemory(
IOIndex_t outputIdx, const std::vector<DimSize_t> & /*inputsSize*/) const
const IOIndex_t outputIdx, const std::vector<DimSize_t> &inputsSize) const
{
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
......
......@@ -33,12 +33,12 @@ Aidge::NbElts_t Aidge::ReLUImpl_cpu::getNbRequiredData(Aidge::IOIndex_t /*inputI
static_cast<NbElts_t>(1), std::multiplies<NbElts_t>());
}
Aidge::NbElts_t Aidge::ReLUImpl_cpu::getNbRequiredProtected(Aidge::IOIndex_t /*inputIdx*/) const {
Aidge::NbElts_t Aidge::ReLUImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const {
// for the direct convolution algorithm, convolutions can be in-place, if there is no padding!
return 0;
}
Aidge::NbElts_t Aidge::ReLUImpl_cpu::getRequiredMemory(Aidge::IOIndex_t /*outputIdx*/, const std::vector<Aidge::DimSize_t>& /*inputsSize*/) const {
Aidge::NbElts_t Aidge::ReLUImpl_cpu::getRequiredMemory(const Aidge::IOIndex_t outputIdx, const std::vector<Aidge::DimSize_t> &inputsSize) const {
const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims();
return std::accumulate(outputDims.begin(), outputDims.end(),
static_cast<NbElts_t>(1), std::multiplies<NbElts_t>());
......
......@@ -33,12 +33,12 @@ Aidge::NbElts_t Aidge::SoftmaxImpl_cpu::getNbRequiredData(Aidge::IOIndex_t /*inp
static_cast<NbElts_t>(1), std::multiplies<NbElts_t>());
}
Aidge::NbElts_t Aidge::SoftmaxImpl_cpu::getNbRequiredProtected(Aidge::IOIndex_t /*inputIdx*/) const {
Aidge::NbElts_t Aidge::SoftmaxImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const {
// for the direct convolution algorithm, convolutions can be in-place, if there is no padding!
return 0;
}
Aidge::NbElts_t Aidge::SoftmaxImpl_cpu::getRequiredMemory(Aidge::IOIndex_t /*outputIdx*/, const std::vector<Aidge::DimSize_t>& /*inputsSize*/) const {
Aidge::NbElts_t Aidge::SoftmaxImpl_cpu::getRequiredMemory(const Aidge::IOIndex_t outputIdx, const std::vector<Aidge::DimSize_t> &inputsSize) const {
const auto& outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims();
return std::accumulate(outputDims.begin(), outputDims.end(),
static_cast<NbElts_t>(1), std::multiplies<NbElts_t>());
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment