Skip to content
Snippets Groups Projects
Commit 6faa8136 authored by Maxence Naud's avatar Maxence Naud
Browse files

[Add] small optimization

parent 0c6edb52
No related branches found
No related tags found
2 merge requests!50version 0.2.0,!20Vit operators
Pipeline #38721 failed
......@@ -25,7 +25,7 @@ void LeakyReLUImpl_cpu_forward_kernel(const LeakyReLU_Op::Attrs& attrs,
const I* input = static_cast<const I*>(input_);
O* output = static_cast<O*>(output_);
I negativeSlope = static_cast<I>(std::get<0>(attrs));
const I negativeSlope = static_cast<const I>(std::get<0>(attrs));
for (std::size_t i = 0; i < inputLenght; ++i) {
output[i] = input[i] >= 0 ? input[i] : input[i] * negativeSlope;
......
......@@ -33,56 +33,74 @@ void ReduceMeanImpl_cpu_forward_kernel(const typename ReduceMean_Op<DIM>::Attrs&
O* output = static_cast<O*>(output_);
const std::size_t nb_dims = inputDims.size();
const std::size_t totalElements = std::accumulate(inputDims.cbegin(), inputDims.cend(), 1, std::multiplies<std::size_t>());
std::size_t outputElements = totalElements;
std::size_t *stride_post = new std::size_t[nb_dims];
stride_post[nb_dims - 1] = 1;
for (std::size_t i = nb_dims-2; i != static_cast<std::size_t>(-1); --i) {
stride_post[i] = stride_post[i+1]*inputDims[i+1];
}
std::size_t *stride_pre = new std::size_t[nb_dims];
stride_pre[0] = 1;
for (std::size_t i = 1; i < nb_dims; ++i) {
stride_pre[i] = stride_pre[i-1]*inputDims[i-1];
}
if (DIM == 1) {
const std::size_t stride_pre = std::accumulate(inputDims.cbegin(), inputDims.cbegin() + std::get<0>(attrs)[0], 1, std::multiplies<std::size_t>());
const std::size_t stride_post = std::accumulate(inputDims.crbegin(), inputDims.crbegin() + nb_dims -1 - std::get<0>(attrs)[0], 1, std::multiplies<std::size_t>());
const I* inputAccumulation = input;
I* outputAccumulation = nullptr;
for (const std::size_t& a : std::get<0>(attrs)) {
outputElements /= inputDims[a];
outputAccumulation = new I[outputElements];
const std::size_t dim_i = inputDims[a];
for (std::size_t pre = 0; pre < stride_pre[a]; ++pre) {
for (std::size_t post = 0; post < stride_post[a]; ++post) {
const std::size_t idx_i = pre * dim_i * stride_post[a] + post;
const std::size_t idx_o = pre * stride_post[a] + post;
outputAccumulation[idx_o] = inputAccumulation[idx_i];
const std::size_t dim_i = inputDims[std::get<0>(attrs)[0]];
for (std::size_t pre = 0; pre < stride_pre; ++pre) {
for (std::size_t post = 0; post < stride_post; ++post) {
const std::size_t idx_i = pre * dim_i * stride_post + post;
const std::size_t idx_o = pre * stride_post + post;
output[idx_o] = input[idx_i];
for (std::size_t i = 1; i < dim_i; ++i) {
outputAccumulation[idx_o] += inputAccumulation[idx_i + i*stride_post[a]];
output[idx_o] += input[idx_i + i*stride_post];
}
output[idx_o] /= dim_i;
}
}
std::for_each(stride_pre+a+1, stride_pre+nb_dims, [dim_i] (std::size_t& val) { val /= dim_i; });
if (inputAccumulation != input) {
delete[] inputAccumulation;
} else {
std::size_t outputElements = totalElements;
std::size_t *stride_post = new std::size_t[nb_dims];
stride_post[nb_dims - 1] = 1;
for (std::size_t i = nb_dims-2; i != static_cast<std::size_t>(-1); --i) {
stride_post[i] = stride_post[i+1]*inputDims[i+1];
}
std::size_t *stride_pre = new std::size_t[nb_dims];
stride_pre[0] = 1;
for (std::size_t i = 1; i < nb_dims; ++i) {
stride_pre[i] = stride_pre[i-1]*inputDims[i-1];
}
inputAccumulation = outputAccumulation;
}
// Copy elements from inputAccumulation to output while dividing by divisor
I divisor = totalElements / outputElements;
std::transform(inputAccumulation, inputAccumulation + outputElements, output,
[divisor](int element) { return element / divisor; });
if (outputAccumulation) {
delete[] outputAccumulation;
}
delete[] stride_post;
delete[] stride_pre;
const I* inputAccumulation = input;
I* outputAccumulation = nullptr;
for (const std::size_t& a : std::get<0>(attrs)) {
outputElements /= inputDims[a];
outputAccumulation = new I[outputElements];
const std::size_t dim_i = inputDims[a];
for (std::size_t pre = 0; pre < stride_pre[a]; ++pre) {
for (std::size_t post = 0; post < stride_post[a]; ++post) {
const std::size_t idx_i = pre * dim_i * stride_post[a] + post;
const std::size_t idx_o = pre * stride_post[a] + post;
outputAccumulation[idx_o] = inputAccumulation[idx_i];
for (std::size_t i = 1; i < dim_i; ++i) {
outputAccumulation[idx_o] += inputAccumulation[idx_i + i*stride_post[a]];
}
}
}
std::for_each(stride_pre+a+1, stride_pre+nb_dims, [dim_i] (std::size_t& val) { val /= dim_i; });
if (inputAccumulation != input) {
delete[] inputAccumulation;
}
inputAccumulation = outputAccumulation;
}
// Copy elements from inputAccumulation to output while dividing by divisor
I divisor = totalElements / outputElements;
std::transform(inputAccumulation, inputAccumulation + outputElements, output,
[divisor](int element) { return element / divisor; });
if (outputAccumulation) {
delete[] outputAccumulation;
}
delete[] stride_post;
delete[] stride_pre;
}
}
namespace {
// DIM = 1
static Registrar<ReduceMeanImpl1DForward_cpu> registrarReduceMeanImplForward_1D_cpu_Float32(
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment