Skip to content
Snippets Groups Projects
Commit 6bb7ae3d authored by Houssem ROUIS's avatar Houssem ROUIS
Browse files

add div operator

parent 889f64fc
No related tags found
1 merge request!19Binary operators
...@@ -19,6 +19,7 @@ ...@@ -19,6 +19,7 @@
#include "aidge/backend/cpu/operator/BatchNormImpl.hpp" #include "aidge/backend/cpu/operator/BatchNormImpl.hpp"
#include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp" #include "aidge/backend/cpu/operator/ConvDepthWiseImpl.hpp"
#include "aidge/backend/cpu/operator/ConvImpl.hpp" #include "aidge/backend/cpu/operator/ConvImpl.hpp"
#include "aidge/backend/cpu/operator/DivImpl.hpp"
#include "aidge/backend/cpu/operator/FCImpl.hpp" #include "aidge/backend/cpu/operator/FCImpl.hpp"
#include "aidge/backend/cpu/operator/LeakyReLUImpl.hpp" #include "aidge/backend/cpu/operator/LeakyReLUImpl.hpp"
#include "aidge/backend/cpu/operator/MatMulImpl.hpp" #include "aidge/backend/cpu/operator/MatMulImpl.hpp"
......
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_DIVIMPL_H_
#define AIDGE_CPU_OPERATOR_DIVIMPL_H_
#include "aidge/backend/OperatorImpl.hpp"
#include "aidge/operator/Div.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
#include <memory>
#include <vector>
namespace Aidge {
// class Div_Op;
// compute kernel registry for forward and backward
class DivImplForward_cpu
: public Registrable<DivImplForward_cpu, std::tuple<DataType, DataType, DataType>, void(const std::size_t, const void*, const void*,void*)> {
};
class DivImplBackward_cpu
: public Registrable<DivImplBackward_cpu, std::tuple<DataType, DataType, DataType>, void(const std::size_t, const void*, const void*, void*)> {
};
class DivImpl_cpu : public OperatorImpl {
public:
DivImpl_cpu(const Div_Op& op) : OperatorImpl(op) {}
static std::unique_ptr<DivImpl_cpu> create(const Div_Op& op) {
return std::make_unique<DivImpl_cpu>(op);
}
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
void forward() override;
};
namespace {
static Registrar<Div_Op> registrarDivImpl_cpu("cpu", Aidge::DivImpl_cpu::create);
}
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_DIVIMPL_H_ */
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_DIVIMPL_FORWARD_KERNEL_H_
#define AIDGE_CPU_OPERATOR_DIVIMPL_FORWARD_KERNEL_H_
#include "aidge/utils/Registrar.hpp"
#include <cmath>
#include <iostream>
#include "aidge/backend/cpu/operator/DivImpl.hpp"
namespace Aidge {
template <class I1, class I2, class O>
void DivImpl_cpu_forward_kernel(std::size_t inputLenght,
const void* input1_,
const void* input2_,
void* output_) {
const I1* input_1 = static_cast<const I1*>(input1_);
const I2* input_2 = static_cast<const I2*>(input2_);
O* output = static_cast<O*>(output_);
for (std::size_t i = 0; i < inputLenght; ++i) {
//TODO: handle Div of two tensors the same size
output[i] = input_1[i] / input_2[0];
}
}
namespace {
// TODO: add support for Div(float, int)
static Registrar<DivImplForward_cpu> registrarDivImplForward_cpu_Float32(
{DataType::Float32, DataType::Float32, DataType::Float32},
Aidge::DivImpl_cpu_forward_kernel<float, float, float>);
static Registrar<DivImplForward_cpu> registrarDivImplForward_cpu_Int32(
{DataType::Int32, DataType::Int32, DataType::Int32},
Aidge::DivImpl_cpu_forward_kernel<int, int, int>);
static Registrar<DivImplForward_cpu> registrarDivImplForward_cpu_Float64(
{DataType::Float64, DataType::Float64, DataType::Float64},
Aidge::DivImpl_cpu_forward_kernel<double, double, double>);
} // namespace
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_DIVIMPL_FORWARD_KERNEL_H_ */
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <cassert>
#include <chrono> // std::chrono::milliseconds
#include <numeric> // std::accumulate
#include <thread> // std::this_thread::sleep_for
#include <vector>
#include "aidge/operator/Div.hpp"
#include "aidge/utils/Types.h"
#include "aidge/backend/cpu/operator/DivImpl.hpp"
#include "aidge/backend/cpu/operator/DivImpl_forward_kernels.hpp"
Aidge::NbElts_t Aidge::DivImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const {
// this implementation can be in-place
return 0;
}
void Aidge::DivImpl_cpu::forward() {
assert(mOp.getInput(0) && "missing input #0");
assert(mOp.getInput(1) && "missing input #1");
// Find the correct kernel type
auto kernelFunc = Registrar<DivImplForward_cpu>::create({
mOp.getInput(0)->dataType(),
mOp.getInput(1)->dataType(),
mOp.getOutput(0)->dataType()});
// Call kernel
kernelFunc(std::static_pointer_cast<Tensor>(mOp.getInput(0))->size(),
mOp.getInput(0)->getImpl()->rawPtr(),
mOp.getInput(1)->getImpl()->rawPtr(),
mOp.getOutput(0)->getImpl()->rawPtr());
}
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <catch2/catch_test_macros.hpp>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/Div.hpp"
#include "aidge/backend/cpu.hpp"
#include <memory>
using namespace Aidge;
TEST_CASE("[cpu/operator] Div(forward)") {
SECTION("2D Tensor") {
std::shared_ptr<Tensor> input_1 = std::make_shared<Tensor>(Array2D<float,2,2> {
{
{0.07607108, 0.44075000},
{0.19494885, 0.20071143}
}
});
std::shared_ptr<Tensor> input_2 = std::make_shared<Tensor>(Array2D<float,1,1>{{0.5}});
std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<float,2,2> {
{
{0.15214217, 0.88150001},
{0.38989770, 0.40142286}
}
});
std::shared_ptr<Node> myDiv = Div();
myDiv->getOperator()->setDatatype(DataType::Float32);
myDiv->getOperator()->setBackend("cpu");
myDiv->getOperator()->associateInput(0, input_1);
myDiv->getOperator()->associateInput(1, input_2);
myDiv->getOperator()->computeOutputDims();
myDiv->forward();
float* resPtr = static_cast<float*>(myDiv->getOperator()->getOutput(0)->getImpl()->rawPtr());
float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr());
for (std::size_t i = 0; i< 4; ++i) {
REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001);
}
}
SECTION("4D Tensor") {
std::shared_ptr<Tensor> input_1 = std::make_shared<Tensor>(Array4D<float,2,3,3,3> {
{
{
{{0.25675946, 0.36265653, 0.22386390},
{0.30483031, 0.97449398, 0.73871714},
{0.36169255, 0.04510212, 0.27525920}},
{{0.73255682, 0.03885978, 0.24181491},
{0.14465559, 0.86070061, 0.88848090},
{0.74408931, 0.87412918, 0.19800508}},
{{0.43551809, 0.73437816, 0.37513995},
{0.25414777, 0.06396711, 0.98708153},
{0.02140611, 0.84974837, 0.62108254}}
},
{
{{0.86227137, 0.69357753, 0.41814715},
{0.76048166, 0.46306920, 0.05907208},
{0.76625377, 0.91793799, 0.92988223}},
{{0.34362513, 0.85009813, 0.21107805},
{0.65575773, 0.38140792, 0.48540717},
{0.10045588, 0.85803932, 0.23778951}},
{{0.30316389, 0.04176688, 0.17290735},
{0.07942408, 0.48647392, 0.39440966},
{0.26543915, 0.92589515, 0.83948994}}
}
}
});
std::shared_ptr<Tensor> input_2 = std::make_shared<Tensor>(Array2D<float,1,1>{{3.0}});
std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array4D<float,2,3,3,3> {
{
{
{{0.08558649, 0.12088551, 0.07462130},
{0.10161010, 0.32483134, 0.24623905},
{0.12056419, 0.01503404, 0.09175307}},
{{0.24418561, 0.01295326, 0.08060497},
{0.04821853, 0.28690019, 0.29616031},
{0.24802977, 0.29137638, 0.06600169}},
{{0.14517270, 0.24479271, 0.12504666},
{0.08471593, 0.02132237, 0.32902718},
{0.00713537, 0.28324947, 0.20702751}}
},
{
{{0.28742379, 0.23119251, 0.13938238},
{0.25349388, 0.15435641, 0.01969069},
{0.25541791, 0.30597934, 0.30996075}},
{{0.11454171, 0.28336605, 0.07035935},
{0.21858591, 0.12713598, 0.16180240},
{0.03348529, 0.28601310, 0.07926317}},
{{0.10105463, 0.01392229, 0.05763578},
{0.02647469, 0.16215797, 0.13146989},
{0.08847972, 0.30863172, 0.27982998}}
}
}
});
std::shared_ptr<Node> myDiv = Div();
myDiv->getOperator()->setDatatype(DataType::Float32);
myDiv->getOperator()->setBackend("cpu");
myDiv->getOperator()->associateInput(0, input_1);
myDiv->getOperator()->associateInput(1, input_2);
myDiv->getOperator()->computeOutputDims();
myDiv->forward();
float* resPtr = static_cast<float*>(myDiv->getOperator()->getOutput(0)->getImpl()->rawPtr());
float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr());
for (std::size_t i = 0; i< 54; ++i) {
REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001);
}
}
}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment