Skip to content
Snippets Groups Projects
Commit 6b0cb49e authored by Jerome Hue's avatar Jerome Hue Committed by Maxence Naud
Browse files

FEAT: Add Heaviside implementation for CPU backend.

parent ce909532
No related branches found
No related tags found
1 merge request!132[UPD] version 0.4.1 -> 0.5.0
Pipeline #64343 waiting for manual action
......@@ -34,6 +34,7 @@
#include "aidge/backend/cpu/operator/FCImpl.hpp"
#include "aidge/backend/cpu/operator/FoldImpl.hpp"
#include "aidge/backend/cpu/operator/GlobalAveragePoolingImpl.hpp"
#include "aidge/backend/cpu/operator/HeavisideImpl.hpp"
#include "aidge/backend/cpu/operator/LRNImpl.hpp"
#include "aidge/backend/cpu/operator/LeakyReLUImpl.hpp"
#include "aidge/backend/cpu/operator/LnImpl.hpp"
......@@ -59,4 +60,3 @@
#include "aidge/backend/cpu/data/TensorImpl.hpp"
#endif /* AIDGE_CPU_IMPORTS_H_ */
/********************************************************************************
* Copyright (c) 2025 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_HEAVISIDEIMPL_H_
#define AIDGE_CPU_OPERATOR_HEAVISIDEIMPL_H_
#include <cstddef> // std::size_t
#include "aidge/backend/cpu/operator/OperatorImpl.hpp"
#include "aidge/operator/Heaviside.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/future_std/span.hpp"
namespace Aidge {
using HeavisideImplCpu =
OperatorImpl_cpu<Heaviside_Op,
void(std::size_t, const void *, void *, const float),
void(const float, std::size_t, const void *, void *)>;
// Implementation entry point registration for operator Heaviside
REGISTRAR(Heaviside_Op, "cpu", HeavisideImplCpu::create);
} // namespace Aidge
#endif // AIDGE_CPU_OPERATOR_HEAVISIDEIMPL_H_
/********************************************************************************
* Copyright (c) 2025 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_HEAVISIDEIMPL_KERNELS_H_
#define AIDGE_CPU_OPERATOR_HEAVISIDEIMPL_KERNELS_H_
#include "aidge/utils/Registrar.hpp"
#include <cstddef> // std::size_t
#include "aidge/backend/cpu/operator/HeavisideImpl.hpp"
#include "aidge/utils/ErrorHandling.hpp"
namespace Aidge {
template <class I, class O>
void HeavisideImplCpuForwardKernel(std::size_t inputLenght,
const void *input_,
void *output_,
const float value) {
const I *input = static_cast<const I *>(input_);
O *output = static_cast<O *>(output_);
for (std::size_t i = 0; i < inputLenght; ++i) {
output[i] = (input[i] > 0) ? 1 : (input[i] == 0 ? value : 0);
}
}
// Kernels registration to implementation entry point
REGISTRAR(HeavisideImplCpu,
{DataType::Float32},
{ProdConso::inPlaceModel,
Aidge::HeavisideImplCpuForwardKernel<float, float>,
nullptr});
} // namespace Aidge
#endif // AIDGE_CPU_OPERATOR_HEAVISIDEIMPL_KERNELS_H__H_
/********************************************************************************
* Copyright (c) 2025 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/backend/cpu/operator/HeavisideImpl.hpp"
#include <stdexcept>
#include "aidge/backend/cpu/operator/HeavisideImpl_kernels.hpp"
#include "aidge/backend/cpu/data/GetCPUPtr.h"
#include "aidge/utils/ErrorHandling.hpp"
template <> void Aidge::HeavisideImplCpu::forward() {
const Heaviside_Op &op_ = dynamic_cast<const Heaviside_Op &>(mOp);
std::shared_ptr<Tensor> input0 = op_.getInput(0);
std::shared_ptr<Tensor> output0 = op_.getOutput(0);
AIDGE_ASSERT(input0, "missing input #0");
const auto impl =
Registrar<HeavisideImplCpu>::create(getBestMatch(getRequiredSpec()));
impl.forward(input0->size(),
getCPUPtr(mOp.getRawInput(0)),
getCPUPtr(mOp.getRawOutput(0)),
op_.value());
}
template <> void Aidge::HeavisideImplCpu::backward() {
AIDGE_THROW_OR_ABORT(std::runtime_error, "Heaviside backward not implemented yet");
}
/********************************************************************************
* Copyright (c) 2025 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include "aidge/backend/cpu/operator/HeavisideImpl_kernels.hpp"
#include <memory>
#include <cstdlib>
#include <random>
#include <catch2/catch_test_macros.hpp>
#include "aidge/data/Tensor.hpp"
#include "aidge/backend/cpu/operator/HeavisideImpl.hpp"
#include "aidge/graph/Node.hpp"
#include "aidge/utils/TensorUtils.hpp"
namespace Aidge
{
TEST_CASE("[cpu/operator] Heaviside(forward)", "[Heaviside][CPU]") {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<float> valueDist(-1.0f, 1.0f);
std::uniform_int_distribution<std::size_t> dimSizeDist(std::size_t(2), std::size_t(10));
std::uniform_int_distribution<std::size_t> nbDimsDist(std::size_t(1), std::size_t(5));
SECTION("1D Tensor") {
std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array1D<float,10> {
{0, 1, 2,-3, 4,-5,-6, 7, 8, 9}
});
std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array1D<float,10> {
{0.5, 1, 1, 0, 1, 0, 0, 1, 1, 1}
});
std::shared_ptr<Node> heaviside = Heaviside(0.5);
auto op = std::static_pointer_cast<OperatorTensor>(heaviside->getOperator());
op->associateInput(0, input0);
op->setBackend("cpu");
op->setDataType(DataType::Float32);
op->forward();
REQUIRE(approxEq<float>(*op->getOutput(0),*expectedOutput));
}
SECTION("+1-D Tensor")
{
auto dims = std::vector<std::size_t>();
auto nbDims = nbDimsDist(gen);
for (auto i = 0u; i < nbDims; ++i) {
dims.push_back(dimSizeDist(gen));
}
auto numberOfElements = std::accumulate(dims.cbegin(), dims.cend(), std::size_t(1), std::multiplies<std::size_t>());
float* inputArray = new float[numberOfElements];
float* resultArray = new float[numberOfElements];
for(auto i = 0u; i < numberOfElements; ++i)
{
inputArray[i] = valueDist(gen);
resultArray[i] = inputArray[i] > 0 ? 1 : (inputArray[i] == 0 ? 0.5 : 0);
}
auto T0 = std::make_shared<Tensor>();
T0->setDataType(DataType::Float32);
T0->setBackend("cpu");
auto T1 = std::make_shared<Tensor>();
T1->setDataType(DataType::Float32);
T1->setBackend("cpu");
T0->resize(dims);
T0->getImpl()->setRawPtr(inputArray, numberOfElements);
T1->resize(dims);
T1->getImpl()->setRawPtr(resultArray, numberOfElements);
std::shared_ptr<Node> heaviside = Heaviside(0.5);
auto op = std::static_pointer_cast<OperatorTensor>(heaviside->getOperator());
op->associateInput(0, T0);
op->setBackend("cpu");
op->setDataType(DataType::Float32);
op->forward();
REQUIRE(approxEq<float>(*(op->getOutput(0)), *T1));
}
}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment