Skip to content
Snippets Groups Projects
Commit 60c74485 authored by Olivier BICHLER's avatar Olivier BICHLER
Browse files

Fixed compile errors

parent c86cb072
No related branches found
No related tags found
No related merge requests found
Pipeline #31081 passed
......@@ -63,11 +63,11 @@ void AvgPoolingImpl2D_cpu_forward_kernel(const AvgPooling_Op<2>::Parameters &par
for (std::size_t ox = 0; ox < oxSize; ++ox) {
const signedsize difx = static_cast<signedsize>(std::get<2>(params)[0] - ox * std::get<0>(params)[0]);
const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0)));
const std::size_t sxMax = (dims[2] + difx) < 0 ? 0 : ((dims[2] + difx) > std::get<1>(params)[0] ? std::get<1>(params)[0] : dims[2] + difx);
const std::size_t sxMax = (static_cast<signedsize>(dims[2]) + difx) < 0 ? 0 : ((dims[2] + difx) > std::get<1>(params)[0] ? std::get<1>(params)[0] : dims[2] + difx);
for (std::size_t oy = 0; oy < oySize; ++oy) {
const signedsize dify = static_cast<signedsize>(std::get<2>(params)[1] - oy * std::get<0>(params)[1]);
const std::size_t syMin = static_cast<std::size_t>(std::max(dify, signedsize(0)));
const std::size_t syMax = (dims[3] + dify) < 0 ? 0 : ((dims[3] + dify) > std::get<1>(params)[1] ? std::get<1>(params)[1] : dims[3] + dify);
const std::size_t syMax = (static_cast<signedsize>(dims[3]) + dify) < 0 ? 0 : ((dims[3] + dify) > std::get<1>(params)[1] ? std::get<1>(params)[1] : dims[3] + dify);
const std::size_t oIndexFull = oIndex + ox*oySize + oy;
const std::size_t ix = ox * std::get<0>(params)[0];
const std::size_t iy = oy * std::get<0>(params)[1];
......
......@@ -69,11 +69,11 @@ void ConvDepthWiseImpl2D_cpu_forward_kernel(const ConvDepthWise_Op<2>::Parameter
for (std::size_t ox = 0; ox < oxSize; ++ox) {
const signedsize difx = static_cast<signedsize>(std::get<4>(params)[0] - ox * std::get<0>(params)[0]);
const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0)));
const std::size_t sxMax = (dims[2] + difx) < 0 ? 0 : ((dims[2] + difx) > std::get<3>(params)[0] ? std::get<3>(params)[0] : dims[2] + difx);
const std::size_t sxMax = (static_cast<signedsize>(dims[2]) + difx) < 0 ? 0 : ((dims[2] + difx) > std::get<3>(params)[0] ? std::get<3>(params)[0] : dims[2] + difx);
for (std::size_t oy = 0; oy < oySize; ++oy) {
const signedsize dify = static_cast<signedsize>(std::get<4>(params)[1] - oy * std::get<0>(params)[1]);
const std::size_t syMin = static_cast<std::size_t>(std::max(dify, signedsize(0)));
const std::size_t syMax = (dims[3] + dify) < 0 ? 0 : ((dims[3] + dify) > std::get<3>(params)[1] ? std::get<3>(params)[1] : dims[3] + dify);
const std::size_t syMax = (static_cast<signedsize>(dims[3]) + dify) < 0 ? 0 : ((dims[3] + dify) > std::get<3>(params)[1] ? std::get<3>(params)[1] : dims[3] + dify);
const std::size_t oIndexFull = oIndex + ox*oySize + oy;
const signedsize ix = static_cast<signedsize>(ox * std::get<0>(params)[0]) - std::get<4>(params)[0];
const signedsize iy = static_cast<signedsize>(oy * std::get<0>(params)[1]) - std::get<4>(params)[1];
......
......@@ -112,11 +112,11 @@ void ConvImpl2D_cpu_forward_kernel(const Conv_Op<2>::Parameters &params, const s
for (std::size_t ox = 0; ox < oxSize; ++ox) {
const signedsize difx = static_cast<signedsize>(std::get<5>(params)[0] - ox * std::get<0>(params)[0]);
const std::size_t sxMin = static_cast<std::size_t>(std::max(difx, signedsize(0)));
const std::size_t sxMax = (dims[2] + difx) < 0 ? 0 : ((dims[2] + difx) > std::get<4>(params)[0] ? std::get<4>(params)[0] : dims[2] + difx);
const std::size_t sxMax = (static_cast<signedsize>(dims[2]) + difx) < 0 ? 0 : ((dims[2] + difx) > std::get<4>(params)[0] ? std::get<4>(params)[0] : dims[2] + difx);
for (std::size_t oy = 0; oy < oySize; ++oy) {
const signedsize dify = static_cast<signedsize>(std::get<5>(params)[1] - oy * std::get<0>(params)[1]);
const std::size_t syMin = static_cast<std::size_t>(std::max(dify, signedsize(0)));
const std::size_t syMax = (dims[3] + dify) < 0 ? 0 : ((dims[3] + dify) > std::get<4>(params)[1] ? std::get<4>(params)[1] : dims[3] + dify);
const std::size_t syMax = (static_cast<signedsize>(dims[3]) + dify) < 0 ? 0 : ((dims[3] + dify) > std::get<4>(params)[1] ? std::get<4>(params)[1] : dims[3] + dify);
const std::size_t oIndexFull = oIndex + ox*oySize + oy;
const signedsize ix = static_cast<signedsize>(ox * std::get<0>(params)[0]) - std::get<5>(params)[0];
const signedsize iy = static_cast<signedsize>(oy * std::get<0>(params)[1]) - std::get<5>(params)[1];
......
......@@ -39,6 +39,7 @@ Aidge::NbElts_t Aidge::AvgPoolingImpl2D_cpu::getRequiredMemory(const Aidge::IOIn
const std::vector<Aidge::DimSize_t> & /*inputsSize*/) const {
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
(void) outputIdx;
const auto &outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims();
return std::accumulate(outputDims.begin(), outputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>());
......
......@@ -36,10 +36,11 @@ Aidge::NbElts_t Aidge::ConvDepthWiseImpl2D_cpu::getNbRequiredProtected(IOIndex_t
return 0;
}
Aidge::NbElts_t Aidge::ConvDepthWiseImpl2D_cpu::getRequiredMemory(const Aidge::IOIndex_t /*outputIdx*/,
Aidge::NbElts_t Aidge::ConvDepthWiseImpl2D_cpu::getRequiredMemory(const Aidge::IOIndex_t outputIdx,
const std::vector<Aidge::DimSize_t> &/*inputsSize*/) const {
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
(void) outputIdx;
const auto &outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims();
return std::accumulate(outputDims.begin(), outputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>());
......
......@@ -36,10 +36,11 @@ Aidge::NbElts_t Aidge::ConvImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputI
return 0;
}
Aidge::NbElts_t Aidge::ConvImpl2D_cpu::getRequiredMemory(const Aidge::IOIndex_t /*outputIdx*/,
Aidge::NbElts_t Aidge::ConvImpl2D_cpu::getRequiredMemory(const Aidge::IOIndex_t outputIdx,
const std::vector<Aidge::DimSize_t> &/*inputsSize*/) const {
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
(void) outputIdx;
const auto &outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims();
return std::accumulate(outputDims.begin(), outputDims.end(), NbElts_t(1), std::multiplies<NbElts_t>());
......
......@@ -44,10 +44,11 @@ Aidge::NbElts_t
}
Aidge::NbElts_t Aidge::FCImpl_cpu::getRequiredMemory(
const IOIndex_t /*outputIdx*/, const std::vector<DimSize_t> &/*inputsSize*/) const
const IOIndex_t outputIdx, const std::vector<DimSize_t> &/*inputsSize*/) const
{
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
(void) outputIdx;
const auto &outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims();
return std::accumulate(
......
......@@ -42,10 +42,11 @@ std::size_t Aidge::ProducerImpl_cpu::getNbRequiredProtected(
std::size_t Aidge::ProducerImpl_cpu::getRequiredMemory(
const IOIndex_t /*outputIdx*/, const std::vector<DimSize_t> &/*inputsSize*/) const
const IOIndex_t outputIdx, const std::vector<DimSize_t> &/*inputsSize*/) const
{
// Requires the whole tensors, regardless of available data on inputs
assert(outputIdx == 0 && "operator has only one output");
(void) outputIdx;
const auto &outputDims = std::static_pointer_cast<Tensor>(mOp.getOutput(0))->dims();
return std::accumulate(
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment