Skip to content
Snippets Groups Projects
Commit 602a9337 authored by Maxence Naud's avatar Maxence Naud
Browse files

Merge branch 'graphview_io_ordering' into 'master'

Update BatchNorm and add fuseBatchNorm test

See merge request !27
parents 9676eac9 10462478
No related branches found
No related tags found
1 merge request!27Update BatchNorm and add fuseBatchNorm test
Pipeline #35620 passed
......@@ -31,7 +31,7 @@ class test_recipies(unittest.TestCase):
input_node = aidge_core.Producer(input_tensor, "X")
conv = aidge_core.Conv2D(1, 1, [3, 3], name="Conv0")
bn = aidge_core.BatchNorm2D(name="Add0")
bn = aidge_core.BatchNorm2D(1, name="Add0")
graph_view = aidge_core.sequential([conv, bn])
......
......@@ -20,7 +20,7 @@
using namespace Aidge;
TEST_CASE("[cpu/operator] BatchNorm(forward)", "[BatchNorm][CPU]") {
std::shared_ptr<Node> myBatchNorm = BatchNorm<2>(0.00001F, 0.1F, "mybatchnorm");
std::shared_ptr<Node> myBatchNorm = BatchNorm<2>(3, 0.00001F, 0.1F, "mybatchnorm");
auto op = std::static_pointer_cast<OperatorTensor>(myBatchNorm -> getOperator());
std::shared_ptr<Tensor> myWeights = std::make_shared<Tensor>(Array1D<float,3> {{0.9044, 0.3028, 0.0218}});
std::shared_ptr<Tensor> myBias = std::make_shared<Tensor>(Array1D<float,3> {{0.1332, 0.7503, 0.0878}});
......
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <catch2/catch_test_macros.hpp>
#include <memory>
#include <cmath>
#include "aidge/graph/GraphView.hpp"
#include "aidge/graph/OpArgs.hpp"
#include "aidge/operator/Conv.hpp"
#include "aidge/operator/BatchNorm.hpp"
#include "aidge/operator/Producer.hpp"
#include "aidge/recipies/Recipies.hpp"
#include "aidge/scheduler/Scheduler.hpp"
#include "aidge/data/Tensor.hpp"
namespace Aidge {
TEST_CASE("[core/recipies] FuseBatchNorm", "[recipies][FuseBatchNorm]") {
auto myProd = Producer({2, 3, 3, 3}, "dataProvider");
auto myConv = Conv(3, 3, {1, 1}, "conv1");
auto myBN = BatchNorm<2>(32, 1.0e-5F, 0.1F, "batchnorm1");
auto myProdOp = std::static_pointer_cast<Producer_Op>(myProd->getOperator());
auto myConvOp = std::static_pointer_cast<Conv_Op<2>>(myConv->getOperator());
auto myBNOp = std::static_pointer_cast<BatchNorm_Op<2>>(myBN->getOperator());
myProdOp->setOutput(0, std::make_shared<Tensor>(Array4D<float,2,3,3,3> { //NCHW
{
{
{{8.28257084e-01, 7.99335480e-01, 7.36702740e-01},
{2.36729562e-01, 8.61912668e-01, 9.93067741e-01},
{1.63514376e-01, 8.95773172e-02, 2.96533108e-01}},
{{2.20776618e-01, 5.89067876e-01, 2.03930080e-01},
{1.31294072e-01, 7.10182846e-01, 1.08420849e-04},
{7.21750259e-01, 4.38212037e-01, 5.08823872e-01}},
{{4.30953979e-01, 1.51903450e-01, 3.76343548e-01},
{8.07861805e-01, 7.79679358e-01, 5.01209974e-01},
{9.31280375e-01, 9.94207084e-01, 1.74868107e-03}}
},
{
{{6.22058094e-01, 2.32256651e-02, 6.18222237e-01},
{9.58304763e-01, 2.11395025e-02, 4.95614648e-01},
{2.50825584e-01, 4.50860739e-01, 3.80362332e-01}},
{{9.91703272e-02, 5.06073236e-01, 4.88969564e-01},
{1.12059772e-01, 7.64178872e-01, 7.60362148e-01},
{2.84135342e-02, 4.29610193e-01, 1.27862811e-01}},
{{9.57209170e-01, 8.22797656e-01, 1.91352129e-01},
{9.52722490e-01, 6.35501027e-01, 5.67592978e-02},
{2.00799644e-01, 4.00822222e-01, 9.14380193e-01}}
}
}
}));
myConvOp -> setInput(1, std::make_shared<Tensor>(Array4D<float,3,3,1,1> { //NCHW
{
{
{{8.28257084e-01}},
{{7.99335480e-01}},
{{7.36702740e-01}}
},
{
{{2.36729562e-01}},
{{8.61912668e-01}},
{{9.93067741e-01}}
},
{
{{1.63514376e-01}},
{{8.95773172e-02}},
{{2.96533108e-01}}
}
}
}));
myConvOp -> setInput(2, std::make_shared<Tensor>(Array1D<float,3> {{0.4470, 0.3064, 0.7061}}));
myBNOp -> setInput(1, std::make_shared<Tensor>(Array1D<float,3> {{0.9044, 0.3028, 0.0218}}));
myBNOp -> setInput(2, std::make_shared<Tensor>(Array1D<float,3> {{0.1332, 0.7503, 0.0878}}));
myBNOp -> setInput(3, std::make_shared<Tensor>(Array1D<float,3> {{0.9931, 0.8421, 0.9936}}));
myBNOp -> setInput(4, std::make_shared<Tensor>(Array1D<float,3> {{0.4470, 0.3064, 0.7061}}));
auto g1 = Sequential({
myConv,
myBN
});
g1 -> setName("fuseBNGraph");
myProd -> addChild(myConv); // set graph input
myProdOp -> setDataType(DataType::Float32);
myProdOp -> setBackend("cpu");
g1 -> compile("cpu", DataType::Float32);
auto s = SequentialScheduler(g1);
s.forward();
std::shared_ptr<Tensor> res1 = std::make_shared<Tensor>(*(myBNOp -> getOutput(0)));
fuseBatchNorm(g1);
s.resetScheduling();
s.forward();
std::shared_ptr<Tensor> res2 = std::make_shared<Tensor>(*(myConvOp -> getOutput(0)));
REQUIRE(g1 -> outputNodes().size() == 1);
REQUIRE(g1 -> inputNodes().size() == 1);
bool eq = true;
for (std::size_t i = 0; i < res1->size(); ++i) {
eq &= std::abs(res1->get<float>(i) - res2->get<float>(i)) < 1.0e-06;
}
REQUIRE(eq);
}
} // namespace Aidge
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment