Skip to content
Snippets Groups Projects
Commit 4620ef34 authored by Houssem ROUIS's avatar Houssem ROUIS
Browse files

add mul operator

parent 5506a972
No related branches found
No related tags found
1 merge request!19Binary operators
......@@ -23,6 +23,7 @@
#include "aidge/backend/cpu/operator/FCImpl.hpp"
#include "aidge/backend/cpu/operator/LeakyReLUImpl.hpp"
#include "aidge/backend/cpu/operator/MatMulImpl.hpp"
#include "aidge/backend/cpu/operator/MulImpl.hpp"
#include "aidge/backend/cpu/operator/PadImpl.hpp"
#include "aidge/backend/cpu/operator/PowImpl.hpp"
#include "aidge/backend/cpu/operator/ProducerImpl.hpp"
......
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_MULIMPL_H_
#define AIDGE_CPU_OPERATOR_MULIMPL_H_
#include "aidge/backend/OperatorImpl.hpp"
#include "aidge/operator/Mul.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
#include <memory>
#include <vector>
namespace Aidge {
// class Mul_Op;
// compute kernel registry for forward and backward
class MulImplForward_cpu
: public Registrable<MulImplForward_cpu, std::tuple<DataType, DataType, DataType>, void(const std::size_t, const std::size_t, const void*, const void*,void*)> {
};
class MulImplBackward_cpu
: public Registrable<MulImplBackward_cpu, std::tuple<DataType, DataType, DataType>, void(const std::size_t, const std::size_t, const void*, const void*, void*)> {
};
class MulImpl_cpu : public OperatorImpl {
public:
MulImpl_cpu(const Mul_Op& op) : OperatorImpl(op) {}
static std::unique_ptr<MulImpl_cpu> create(const Mul_Op& op) {
return std::make_unique<MulImpl_cpu>(op);
}
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
void forward() override;
};
namespace {
static Registrar<Mul_Op> registrarMulImpl_cpu("cpu", Aidge::MulImpl_cpu::create);
}
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_MULIMPL_H_ */
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_MULIMPL_FORWARD_KERNEL_H_
#define AIDGE_CPU_OPERATOR_MULIMPL_FORWARD_KERNEL_H_
#include "aidge/utils/Registrar.hpp"
#include "aidge/backend/cpu/operator/MulImpl.hpp"
namespace Aidge {
template <class I1, class I2, class O>
void MulImpl_cpu_forward_kernel(std::size_t input1Length,
std::size_t input2Length,
const void* input1_,
const void* input2_,
void* output_) {
const I1* input_1 = static_cast<const I1*>(input1_);
const I2* input_2 = static_cast<const I2*>(input2_);
O* output = static_cast<O*>(output_);
if (input2Length == input1Length)
{
for (std::size_t i = 0; i < input1Length; ++i) {
output[i] = input_1[i] * input_2[i];
}
}
else if (input2Length == 1)
{
for (std::size_t i = 0; i < input1Length; ++i) {
output[i] = input_1[i] * input_2[0];
}
}
else // input_2 is 1d and of size the number of channels of input_1
{
for (std::size_t i = 0; i < input1Length; ++i) {
std::size_t channelIdx = i % input2Length;
output[i] = input_1[i] * input_2[channelIdx];
}
}
}
namespace {
static Registrar<MulImplForward_cpu> registrarMulImplForward_cpu_Float32(
{DataType::Float32, DataType::Float32, DataType::Float32},
Aidge::MulImpl_cpu_forward_kernel<float, float, float>);
static Registrar<MulImplForward_cpu> registrarMulImplForward_cpu_Int32(
{DataType::Int32, DataType::Int32, DataType::Int32},
Aidge::MulImpl_cpu_forward_kernel<int, int, int>);
static Registrar<MulImplForward_cpu> registrarMulImplForward_cpu_Float64(
{DataType::Float64, DataType::Float64, DataType::Float64},
Aidge::MulImpl_cpu_forward_kernel<double, double, double>);
} // namespace
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_MULIMPL_FORWARD_KERNEL_H_ */
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <cassert>
#include <chrono> // std::chrono::milliseconds
#include <numeric> // std::accumulate
#include <thread> // std::this_thread::sleep_for
#include <vector>
#include "aidge/operator/Mul.hpp"
#include "aidge/utils/Types.h"
#include "aidge/backend/cpu/operator/MulImpl.hpp"
#include "aidge/backend/cpu/operator/MulImpl_forward_kernels.hpp"
Aidge::NbElts_t Aidge::MulImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const {
// this implementation can be in-place
return 0;
}
void Aidge::MulImpl_cpu::forward() {
assert(mOp.getInput(0) && "missing input #0");
assert(mOp.getInput(1) && "missing input #1");
assert(((mOp.getInput(1)->size() == 1) ||
(mOp.getInput(1)->size() == mOp.getInput(0)->size()) ||
(mOp.getInput(1)->nbDims() == 1 && mOp.getInput(1)->size() == mOp.getInput(0)->dims()[mOp.getInput(0)->nbDims()-1])
) &&
"input #1 must either be a tensor of size 1, the number of channels of input # or the same size of input #0");
// Find the correct kernel type
auto kernelFunc = Registrar<MulImplForward_cpu>::create({
mOp.getInput(0)->dataType(),
mOp.getInput(1)->dataType(),
mOp.getOutput(0)->dataType()});
// Call kernel
kernelFunc(std::static_pointer_cast<Tensor>(mOp.getInput(0))->size(),
std::static_pointer_cast<Tensor>(mOp.getInput(1))->size(),
mOp.getInput(0)->getImpl()->rawPtr(),
mOp.getInput(1)->getImpl()->rawPtr(),
mOp.getOutput(0)->getImpl()->rawPtr());
}
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <catch2/catch_test_macros.hpp>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/Mul.hpp"
#include "aidge/backend/cpu.hpp"
#include <memory>
using namespace Aidge;
TEST_CASE("[cpu/operator] Mul(forward)") {
SECTION("2D Tensor by Singleton") {
std::shared_ptr<Tensor> input_1 = std::make_shared<Tensor>(Array2D<float,2,2> {
{
{0.38977361, 0.34064174},
{0.00427264, 0.90872520}
}
});
std::shared_ptr<Tensor> input_2 = std::make_shared<Tensor>(Array2D<float,1,1>{{3.0}});
std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<float,2,2> {
{
{1.16932082, 1.02192521},
{0.01281792, 2.72617555}
}
});
std::shared_ptr<Node> myMul = Mul();
myMul->getOperator()->setDatatype(DataType::Float32);
myMul->getOperator()->setBackend("cpu");
myMul->getOperator()->associateInput(0, input_1);
myMul->getOperator()->associateInput(1, input_2);
myMul->getOperator()->computeOutputDims();
myMul->forward();
float* resPtr = static_cast<float*>(myMul->getOperator()->getOutput(0)->getImpl()->rawPtr());
float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr());
for (std::size_t i = 0; i< 4; ++i) {
REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001);
}
}
SECTION("2D Tensors") {
std::shared_ptr<Tensor> input_1 = std::make_shared<Tensor>(Array2D<float,2,2> {
{
{0.38977361, 0.34064174},
{0.00427264, 0.90872520}
}
});
std::shared_ptr<Tensor> input_2 = std::make_shared<Tensor>(Array2D<float,2,2>{
{
{0.02362096, 0.24084556},
{0.94690859, 0.13512510}
}
});
std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<float,2,2> {
{
{0.00920683, 0.08204205},
{0.00404580, 0.12279158}
}
});
std::shared_ptr<Node> myMul = Mul();
myMul->getOperator()->setDatatype(DataType::Float32);
myMul->getOperator()->setBackend("cpu");
myMul->getOperator()->associateInput(0, input_1);
myMul->getOperator()->associateInput(1, input_2);
myMul->getOperator()->computeOutputDims();
myMul->forward();
float* resPtr = static_cast<float*>(myMul->getOperator()->getOutput(0)->getImpl()->rawPtr());
float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr());
for (std::size_t i = 0; i< 4; ++i) {
REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001);
}
}
SECTION("3D Tensor by 1D Tensor") {
std::shared_ptr<Tensor> input_1 = std::make_shared<Tensor>(Array3D<float,2,2,3> {
{
{{0.33647752, 0.89360154, 0.46586215},
{0.71518236, 0.71481097, 0.97991812}},
{{0.17393428, 0.56849813, 0.18489265},
{0.78397650, 0.00348300, 0.65758008}}
}
});
std::shared_ptr<Tensor> input_2 = std::make_shared<Tensor>(Array1D<float,3>{
{0.15380561, 0.51063120, 0.93031412}
});
std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array3D<float,2,2,3> {
{
{{0.05175213, 0.45630082, 0.43339813},
{0.10999906, 0.36500478, 0.91163164}},
{{0.02675207, 0.29029289, 0.17200825},
{0.12057999, 0.00177853, 0.61175603}}
}
});
std::shared_ptr<Node> myMul = Mul();
myMul->getOperator()->setDatatype(DataType::Float32);
myMul->getOperator()->setBackend("cpu");
myMul->getOperator()->associateInput(0, input_1);
myMul->getOperator()->associateInput(1, input_2);
myMul->getOperator()->computeOutputDims();
myMul->forward();
float* resPtr = static_cast<float*>(myMul->getOperator()->getOutput(0)->getImpl()->rawPtr());
float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr());
for (std::size_t i = 0; i< 4; ++i) {
REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001);
}
}
}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment