Skip to content
Snippets Groups Projects
Commit 2383b5e6 authored by Maxence Naud's avatar Maxence Naud
Browse files

Merge branch 'dev' into scheduler_backprop

parents c6c32921 8521b218
No related branches found
No related tags found
2 merge requests!50version 0.2.0,!39Scheduler backprop
...@@ -36,13 +36,12 @@ void Aidge::SoftmaxImpl_cpu::forward() { ...@@ -36,13 +36,12 @@ void Aidge::SoftmaxImpl_cpu::forward() {
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(), std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()}); std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
DimSize_t batchSize = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims()[0]; Softmax_Op::Attrs attr = dynamic_cast<const Softmax_Op&>(mOp).getStaticAttributes();
DimSize_t channelSize = std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims()[1]; const int& axisIdx = static_cast<const int&>(std::get<0>(attr));
DimSize_t featureSize = (std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->size()/batchSize)/channelSize;
// Call kernel // Call kernel
kernelFunc(batchSize, kernelFunc(axisIdx,
channelSize, std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(),
featureSize, std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(),
getCPUPtr(mOp.getRawInput(0)), std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr());
getCPUPtr(mOp.getRawOutput(0)));
} }
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <cassert>
#include <chrono> // std::chrono::milliseconds
#include <numeric> // std::accumulate
#include <thread> // std::this_thread::sleep_for
#include <vector>
#include "aidge/utils/Types.h"
#include "aidge/operator/Transpose.hpp"
#include "aidge/backend/cpu/operator/TransposeImpl.hpp"
#include "aidge/backend/cpu/operator/TransposeImpl_forward_kernels.hpp"
Aidge::NbElts_t Aidge::TransposeImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const {
// this implementation can be in-place
return 0;
}
Aidge::NbElts_t Aidge::TransposeImpl3D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const {
// this implementation can be in-place
return 0;
}
Aidge::NbElts_t Aidge::TransposeImpl4D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const {
// this implementation can be in-place
return 0;
}
Aidge::NbElts_t Aidge::TransposeImpl5D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const {
// this implementation can be in-place
return 0;
}
Aidge::NbElts_t Aidge::TransposeImpl6D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const {
// this implementation can be in-place
return 0;
}
void Aidge::TransposeImpl2D_cpu::forward() {
// Find the correct kernel type
auto kernelFunc =
Registrar<TransposeImpl2DForward_cpu>::create({
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
// auto attr = dynamic_cast<const Transpose_Op<2>&>(mOp).getStaticAttributes();
// std::vector<DimIdx_t> outDimsOrder;
// outDimsOrder.reserve(std::get<0>(attr).size()); // Reserve space for the new vector
// std::transform(std::get<0>(attr).begin(), std::get<0>(attr).end(), std::back_inserter(outDimsOrder),
// [](int intValue) { return static_cast<DimIdx_t>(intValue); });
// Call kernel
kernelFunc(dynamic_cast<const Transpose_Op<2>&>(mOp).getStaticAttributes(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr());
}
void Aidge::TransposeImpl3D_cpu::forward() {
// Find the correct kernel type
auto kernelFunc =
Registrar<TransposeImpl3DForward_cpu>::create({
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
// Call kernel
kernelFunc(dynamic_cast<const Transpose_Op<3>&>(mOp).getStaticAttributes(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr());
}
void Aidge::TransposeImpl4D_cpu::forward() {
// Find the correct kernel type
auto kernelFunc =
Registrar<TransposeImpl4DForward_cpu>::create({
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
// Call kernel
kernelFunc(dynamic_cast<const Transpose_Op<4>&>(mOp).getStaticAttributes(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr());
}
void Aidge::TransposeImpl5D_cpu::forward() {
// Find the correct kernel type
auto kernelFunc =
Registrar<TransposeImpl5DForward_cpu>::create({
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
// Call kernel
kernelFunc(dynamic_cast<const Transpose_Op<5>&>(mOp).getStaticAttributes(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr());
}
void Aidge::TransposeImpl6D_cpu::forward() {
// Find the correct kernel type
auto kernelFunc =
Registrar<TransposeImpl6DForward_cpu>::create({
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dataType(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dataType()});
// Call kernel
kernelFunc(dynamic_cast<const Transpose_Op<6>&>(mOp).getStaticAttributes(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(0))->getImpl()->rawPtr(),
std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->getImpl()->rawPtr());
}
\ No newline at end of file
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <catch2/catch_test_macros.hpp>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/Erf.hpp"
#include "aidge/backend/cpu.hpp"
#include <memory>
using namespace Aidge;
TEST_CASE("[cpu/operator] Erf(forward)") {
SECTION("1D Tensor") {
std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array1D<float,10> {
{0.41384590, 0.43120754, 0.93762982, 0.31049860, 0.77547199, 0.09514862,
0.16145366, 0.42776686, 0.43487436, 0.41170865}
});
std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array1D<float,10> {
{0.44163144, 0.45801866, 0.81516320, 0.33941913, 0.72722000, 0.10704061,
0.18061027, 0.45479023, 0.46144873, 0.43959764}
});
std::shared_ptr<Node> myErf = Erf();
auto op = std::static_pointer_cast<OperatorTensor>(myErf -> getOperator());
op->associateInput(0,input0);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
op->computeOutputDims();
myErf->forward();
float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr());
float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr());
for (std::size_t i = 0; i< expectedOutput->size(); ++i) {
REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001);
}
}
SECTION("3D Tensor") {
std::shared_ptr<Tensor> input0 = std::make_shared<Tensor>(Array3D<float,2,2,3> {
{
{
{0.97037154, 0.86208081, 0.77767169},
{0.38160080, 0.11422747, 0.77284443},
},
{
{0.51592529, 0.72543722, 0.54641193},
{0.93866944, 0.97767913, 0.34172094}
}
}
});
std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array3D<float,2,2,3> {
{
{
{0.83003384, 0.77721894, 0.72857803},
{0.41057193, 0.12833349, 0.72559172},
},
{
{0.53438270, 0.69507217, 0.56032562},
{0.81564975, 0.83322692, 0.37109339}
}
}
});
std::shared_ptr<Node> myErf = Erf();
auto op = std::static_pointer_cast<OperatorTensor>(myErf -> getOperator());
op->associateInput(0,input0);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
op->computeOutputDims();
myErf->forward();
float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr());
float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr());
for (std::size_t i = 0; i< expectedOutput->size(); ++i) {
REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001);
}
}
}
\ No newline at end of file
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <catch2/catch_test_macros.hpp>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/Gather.hpp"
#include "aidge/backend/cpu.hpp"
#include <memory>
using namespace Aidge;
TEST_CASE("[cpu/operator] Gather(forward)") {
SECTION("2D Tensor axis 0") {
std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array2D<int,3,3> {
{
{1, 2, 3},
{4, 5, 6},
{7, 8, 9}
}
});
std::shared_ptr<Tensor> indexes = std::make_shared<Tensor>(Array2D<int,1,2> {
{
{1, 2}
}
});
std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array3D<int,1,2,3> {
{
{
{4, 5, 6},
{7, 8, 9}
}
}
});
std::shared_ptr<Node> myGather = Gather({1, 2}, {1, 2}, 0);
auto op = std::static_pointer_cast<OperatorTensor>(myGather -> getOperator());
op->associateInput(0,input);
// op->associateInput(1,indexes);
op->setDataType(DataType::Int32);
op->setBackend("cpu");
op->computeOutputDims();
myGather->forward();
op->getOutput(0)->print();
expectedOutput->print();
REQUIRE(*(op->getOutput(0)) == *expectedOutput);
}
SECTION("2D Tensor axis 1") {
std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array2D<int,3,3> {
{
{1, 2, 3},
{4, 5, 6},
{7, 8, 9}
}
});
std::shared_ptr<Tensor> indexes = std::make_shared<Tensor>(Array2D<int,1,2> {
{
{0, 2}
}
});
std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array3D<int,3,1,2> {
{
{
{1, 3}
},
{
{4, 6}
},
{
{7, 9}
}
}
});
std::shared_ptr<Node> myGather = Gather({0, 2}, {1, 2}, 1);
auto op = std::static_pointer_cast<OperatorTensor>(myGather -> getOperator());
op->associateInput(0,input);
// op->associateInput(1,indexes);
op->setDataType(DataType::Int32);
op->setBackend("cpu");
op->computeOutputDims();
myGather->forward();
REQUIRE(*(op->getOutput(0)) == *expectedOutput);
}
}
\ No newline at end of file
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <catch2/catch_test_macros.hpp>
#include <memory>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/ReduceMean.hpp"
#include "aidge/operator/Conv.hpp"
#include "aidge/backend/cpu.hpp"
using namespace Aidge;
TEST_CASE("[cpu/operator] ReduceMean(forward)", "[ReduceMean][CPU]") {
SECTION("KeepDims") {
SECTION("test 1") {
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array3D<float,3,2,2> {
{
{
{ 5.0, 1.0 },
{ 20.0, 2.0 }
},
{
{ 30.0, 1.0 },
{ 40.0, 2.0 }
},
{
{ 55.0, 1.0 },
{ 60.0, 2.0 }
}
}
});
Tensor myOutput = Tensor(Array3D<float,3,1,2> {
{
{{ 12.5, 1.5 }},
{{ 35.0, 1.5 }},
{{ 57.5, 1.5 }}
}
});
std::shared_ptr<Node> myReduceMean = ReduceMean({1}, 1);
auto op = std::static_pointer_cast<OperatorTensor>(myReduceMean -> getOperator());
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
op->computeOutputDims();
myReduceMean->forward();
op->getOutput(0)->print();
REQUIRE(*(op->getOutput(0)) == myOutput);
}
SECTION("test 2") {
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array3D<float,3,3,2> {
{
{
{ 0.0, 0.0 },
{ 1.0, 1.0 },
{ 2.0, 2.0 }
},
{
{ 3.0, 3.0 },
{ 4.0, 4.0 },
{ 5.0, 5.0 }
},
{
{ 6.0, 6.0 },
{ 7.0, 7.0 },
{ 8.0, 8.0 }
}
}
});
Tensor myOutput = Tensor(Array3D<float,3,1,1> {
{
{{ 1.0 }},
{{ 4.0 }},
{{ 7.0 }}
}
});
std::shared_ptr<Node> myReduceMean = ReduceMean({1, 2}, 1);
auto op = std::static_pointer_cast<OperatorTensor>(myReduceMean -> getOperator());
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
op->computeOutputDims();
myReduceMean->forward();
myOutput.print();
op->getOutput(0)->print();
REQUIRE(*(op->getOutput(0)) == myOutput);
}
}
SECTION("not_KeepDims") {
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array3D<float,3,2,2> {
{
{
{ 5.0, 1.0 },
{ 20.0, 2.0 }
},
{
{ 30.0, 1.0 },
{ 40.0, 2.0 }
},
{
{ 55.0, 1.0 },
{ 60.0, 2.0 }
}
}
});
std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array2D<float,3,2> {
{
{ 12.5, 1.5 },
{ 35.0, 1.5 },
{ 57.5, 1.5 }
}
});
std::shared_ptr<Node> myReduceMean = ReduceMean({1}, 0);
auto op = std::static_pointer_cast<OperatorTensor>(myReduceMean -> getOperator());
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
op->computeOutputDims();
myReduceMean->forward();
op->getOutput(0)->print();
REQUIRE(*(op->getOutput(0)) == *myOutput);
}
SECTION("all_axes") {
std::shared_ptr<Tensor> myInput = std::make_shared<Tensor>(Array3D<float,3,2,2> {
{
{
{ 5.0, 1.0 },
{ 20.0, 2.0 }
},
{
{ 30.0, 1.0 },
{ 40.0, 2.0 }
},
{
{ 55.0, 1.0 },
{ 60.0, 2.0 }
}
}
});
std::shared_ptr<Tensor> myOutput = std::make_shared<Tensor>(Array1D<float,1> {
{18.25}
});
std::shared_ptr<Node> myReduceMean = ReduceMean({0, 1, 2}, 0);
auto op = std::static_pointer_cast<OperatorTensor>(myReduceMean -> getOperator());
op->associateInput(0,myInput);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
op->computeOutputDims();
myReduceMean->forward();
op->getOutput(0)->print();
REQUIRE(*(op->getOutput(0)) == *myOutput);
}
}
\ No newline at end of file
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <catch2/catch_test_macros.hpp>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/Reshape.hpp"
#include "aidge/backend/cpu.hpp"
#include <memory>
using namespace Aidge;
TEST_CASE("[cpu/operator] Reshape(forward)") {
SECTION("1D Tensor") {
std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array1D<float,6> {
{1.0, 2.0, 3.0, 4.0, 5.0, 6.0}
});
std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<float,2,3> {
{
{1.0, 2.0, 3.0},
{4.0, 5.0, 6.0}
}
});
std::shared_ptr<Node> myReshape = Reshape({2, 3});
auto op = std::static_pointer_cast<OperatorTensor>(myReshape -> getOperator());
op->associateInput(0, input);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
op->computeOutputDims();
myReshape->forward();
REQUIRE(*(op->getOutput(0)) == *expectedOutput);
}
SECTION("2D Tensor") {
std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array2D<float,2,3> {
{
{1.0, 2.0, 3.0},
{4.0, 5.0, 6.0}
}
});
std::shared_ptr<Tensor> expectedOutput = std::make_shared<Tensor>(Array2D<float,3,2> {
{
{1.0, 2.0},
{3.0, 4.0},
{5.0, 6.0}
}
});
std::shared_ptr<Node> myReshape = Reshape({3, 2});
auto op = std::static_pointer_cast<OperatorTensor>(myReshape -> getOperator());
op->associateInput(0, input);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
op->computeOutputDims();
myReshape->forward();
REQUIRE(*(op->getOutput(0)) == *expectedOutput);
}
}
\ No newline at end of file
...@@ -163,4 +163,4 @@ TEST_CASE("[cpu/operator] Slice(forward)", "[Slice][CPU]") { ...@@ -163,4 +163,4 @@ TEST_CASE("[cpu/operator] Slice(forward)", "[Slice][CPU]") {
REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims()); REQUIRE(op->getOutput(0)->dims() == expectedOutput->dims());
REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType()); REQUIRE(op->getOutput(0)->dataType() == expectedOutput->dataType());
} }
} }
\ No newline at end of file
...@@ -41,15 +41,15 @@ TEST_CASE("[cpu/operator] Softmax(forward)", "[Softmax][CPU]") { ...@@ -41,15 +41,15 @@ TEST_CASE("[cpu/operator] Softmax(forward)", "[Softmax][CPU]") {
std::shared_ptr<Node> mySoftmax = Softmax(1); std::shared_ptr<Node> mySoftmax = Softmax(1);
auto op = std::static_pointer_cast<OperatorTensor>(mySoftmax -> getOperator()); auto op = std::static_pointer_cast<OperatorTensor>(mySoftmax -> getOperator());
mySoftmax->getOperator()->associateInput(0,input); op->associateInput(0,input);
mySoftmax->getOperator()->setDataType(DataType::Float32); op->setDataType(DataType::Float32);
mySoftmax->getOperator()->setBackend("cpu"); op->setBackend("cpu");
op->computeOutputDims(); op->computeOutputDims();
mySoftmax->forward(); mySoftmax->forward();
float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr());
float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr());
for (std::size_t i = 0; i< 20; ++i) { for (std::size_t i = 0; i< expectedOutput->size(); ++i) {
REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001);
} }
...@@ -110,17 +110,16 @@ TEST_CASE("[cpu/operator] Softmax(forward)", "[Softmax][CPU]") { ...@@ -110,17 +110,16 @@ TEST_CASE("[cpu/operator] Softmax(forward)", "[Softmax][CPU]") {
std::shared_ptr<Node> mySoftmax = Softmax(1); std::shared_ptr<Node> mySoftmax = Softmax(1);
auto op = std::static_pointer_cast<OperatorTensor>(mySoftmax -> getOperator()); auto op = std::static_pointer_cast<OperatorTensor>(mySoftmax -> getOperator());
mySoftmax->getOperator()->associateInput(0,input); op->associateInput(0,input);
mySoftmax->getOperator()->setDataType(DataType::Float32); op->setDataType(DataType::Float32);
mySoftmax->getOperator()->setBackend("cpu"); op->setBackend("cpu");
op->computeOutputDims(); op->computeOutputDims();
mySoftmax->forward(); mySoftmax->forward();
float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr()); float* resPtr = static_cast<float*>(op->getOutput(0)->getImpl()->rawPtr());
float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr()); float* expectedPtr = static_cast<float*>(expectedOutput->getImpl()->rawPtr());
for (std::size_t i = 0; i< 54; ++i) { for (std::size_t i = 0; i< expectedOutput->size(); ++i) {
REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001); REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001);
} }
// REQUIRE(*mySoftmax->getOperator()->getOutput(0) == *expectedOutput);
} }
} }
\ No newline at end of file
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <catch2/catch_test_macros.hpp>
#include <memory>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/Transpose.hpp"
#include "aidge/backend/cpu.hpp"
using namespace Aidge;
TEST_CASE("[cpu/operator] Transpose(forward)") {
SECTION("3D Tensor") {
std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array3D<float,2,3,4> {
{
{{0.42507452, 0.11244237, 0.43243718, 0.62354952},
{0.90250170, 0.48719984, 0.45781207, 0.92536664},
{0.06348717, 0.91678733, 0.64452291, 0.00484818}},
{{0.66873497, 0.99508536, 0.55714869, 0.84887981},
{0.41666120, 0.92365038, 0.80034822, 0.38721532},
{0.52037925, 0.53937608, 0.66380072, 0.36330253}}
}
});
std::shared_ptr<Tensor> output = std::make_shared<Tensor>(Array3D<float,2,4,3> {
{
{{0.42507452, 0.90250170, 0.06348717},
{0.11244237, 0.48719984, 0.91678733},
{0.43243718, 0.45781207, 0.64452291},
{0.62354952, 0.92536664, 0.00484818}},
{{0.66873497, 0.41666120, 0.52037925},
{0.99508536, 0.92365038, 0.53937608},
{0.55714869, 0.80034822, 0.66380072},
{0.84887981, 0.38721532, 0.36330253}}
}
});
std::shared_ptr<Node> myTranspose = Transpose<3>(std::array<DimSize_t,3>{{0,2,1}});
auto op = std::static_pointer_cast<OperatorTensor>(myTranspose -> getOperator());
op->associateInput(0,input);
op->setDataType(DataType::Float32);
op->setBackend("cpu");
op->computeOutputDims();
myTranspose->forward();
REQUIRE(*(op->getOutput(0)) == *output);
}
SECTION("4D Tensor") {
std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array4D<int,2,3,1,4> {
{
{
{
{1, 2, 3, 4}
},
{
{5, 6, 7, 8}
},
{
{9, 10, 11, 12}
}
},
{
{
{13, 14, 15, 16}
},
{
{17, 18, 19, 20}
},
{
{21, 22, 23, 24}
}
}
}
});
std::shared_ptr<Tensor> output = std::make_shared<Tensor>(Array4D<int,2,4,1,3> {
{
{
{
{1, 5, 9}
},
{
{2, 6, 10}
},
{
{3, 7, 11}
},
{
{4, 8, 12}
}
},
{
{
{13, 17, 21}
},
{
{14, 18, 22}
},
{
{15, 19, 23}
},
{
{16, 20, 24}
}
}
}
});
std::shared_ptr<Node> myTranspose = Transpose<4>(std::array<DimSize_t,4>{{0,3,2,1}});
auto op = std::static_pointer_cast<OperatorTensor>(myTranspose -> getOperator());
op->associateInput(0,input);
op->setDataType(DataType::Int32);
op->setBackend("cpu");
op->computeOutputDims();
myTranspose->forward();
REQUIRE(*(op->getOutput(0)) == *output);
}
}
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment