Skip to content
Snippets Groups Projects
Commit 1cd0d071 authored by Jerome Hue's avatar Jerome Hue Committed by Olivier BICHLER
Browse files

Add backward pass CPU implementation for Mul operator

parent ddcd9dbc
No related branches found
No related tags found
2 merge requests!93Release v0.3.0,!85Add backward pass CPU implementation for Mul operator
Pipeline #54391 passed
......@@ -25,11 +25,25 @@ namespace Aidge {
// compute kernel registry for forward and backward
class MulImplForward_cpu
: public Registrable<MulImplForward_cpu, std::tuple<DataType, DataType, DataType>, void(const std::vector<std::size_t>&, const std::vector<std::size_t>&, const std::vector<std::size_t>&, const void*, const void*,void*)> {
};
: public Registrable<MulImplForward_cpu, std::tuple<DataType, DataType, DataType>, void(const std::vector<std::size_t>&,
const std::vector<std::size_t>&,
const std::vector<std::size_t>&,
const void*,
const void*,
void*)> {};
class MulImplBackward_cpu
: public Registrable<MulImplBackward_cpu, std::tuple<DataType, DataType, DataType>, void(const std::vector<std::size_t>&, const std::vector<std::size_t>&, const std::vector<std::size_t>&, const void*, const void*, void*)> {
};
: public Registrable<MulImplBackward_cpu, std::tuple<DataType, DataType, DataType>, void(const std::size_t,
const std::size_t,
const std::size_t,
const std::vector<std::size_t>,
const std::vector<std::size_t>,
const void*,
const void*,
const void*,
void*,
void*)> {};
class MulImpl_cpu : public OperatorImpl {
public:
......@@ -40,7 +54,9 @@ public:
}
Elts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
void forward() override;
void backward() override;
};
namespace {
......
#ifndef AIDGE_CPU_OPERATOR_MULIMPL_BACKWARD_KERNEL_H_
#define AIDGE_CPU_OPERATOR_MULIMPL_BACKWARD_KERNEL_H_
#include "aidge/utils/Registrar.hpp"
#include <cstdint> // std::int32_t, std::int64_t
#include <algorithm>
#include "aidge/backend/cpu/data/Broadcasting.hpp"
#include "aidge/backend/cpu/operator/MulImpl.hpp"
namespace Aidge {
template <class I1, class I2, class O>
void MulImpl_cpu_backward_kernel(const std::size_t input0Length,
const std::size_t input1Length,
const std::size_t grad0Length,
const std::vector<std::size_t> input0Dims,
const std::vector<std::size_t> input1Dims,
const void* input0_,
const void* input1_,
const void* grad_output_,
void* gradientInput0,
void* gradientInput1)
{
const auto* input0 = static_cast<const I1*>(input0_);
const auto* input1 = static_cast<const I1*>(input1_);
const auto* grad_output = static_cast<const O*>(grad_output_);
auto* grad_input_0 = static_cast<I1*>(gradientInput0);
auto* grad_input_1 = static_cast<I2*>(gradientInput1);
if(input0Dims.size() >= input1Dims.size())
{
AIDGE_ASSERT(input0Length == grad0Length, "Incorrect dimensions between Mul input and output tensors");
for(auto i = 0U; i < input0Length; ++i)
{
const auto indices = getMultiDimIndices(input1Dims, i);
const auto flattenedIndex = getFlattenedIndex(input1Dims, indices);
grad_input_0[i] = input1[flattenedIndex] * grad_output[i];
}
for(std::size_t i = 0 ; i < grad0Length; ++i)
{
const auto indices = getMultiDimIndices(input1Dims, i);
const auto flattenedIndex = getFlattenedIndex(input1Dims, indices);
grad_input_1[flattenedIndex] += input0[i] * grad_output[i];
}
} else {
AIDGE_ASSERT(input1Length == grad0Length, "Incorrect dimensions between Mul input and output tensors");
for(auto i = 0U; i < input1Length; ++i)
{
const auto indices = getMultiDimIndices(input0Dims, i);
const auto flattenedIndex = getFlattenedIndex(input0Dims, indices);
grad_input_1[i] = input0[flattenedIndex] * grad_output[i];
}
for(std::size_t i = 0 ; i < grad0Length; ++i)
{
const auto indices = getMultiDimIndices(input0Dims, i);
const auto flattenedIndex = getFlattenedIndex(input0Dims, indices);
grad_input_0[flattenedIndex] += input1[i] * grad_output[i];
}
}
}
namespace {
static Registrar<MulImplBackward_cpu> registrarMulImplBackward_cpu_Float32(
{DataType::Float32, DataType::Float32, DataType::Float32},
Aidge::MulImpl_cpu_backward_kernel<float, float, float>);
static Registrar<MulImplBackward_cpu> registrarMulImplBackward_cpu_Float64(
{DataType::Float64, DataType::Float64, DataType::Float64},
Aidge::MulImpl_cpu_backward_kernel<double, double, double>);
static Registrar<MulImplBackward_cpu> registrarMulImplBackward_cpu_Int32(
{DataType::Int32, DataType::Int32, DataType::Int32},
Aidge::MulImpl_cpu_backward_kernel<std::int32_t, std::int32_t, std::int32_t>);
static Registrar<MulImplBackward_cpu> registrarMulImplBackward_cpu_Int64(
{DataType::Int64, DataType::Int64, DataType::Int64},
Aidge::MulImpl_cpu_backward_kernel<std::int64_t, std::int64_t, std::int64_t>);
} // namespace
} // namespace Aidge
#endif
......@@ -22,6 +22,7 @@
#include "aidge/backend/cpu/operator/MulImpl.hpp"
#include "aidge/backend/cpu/operator/MulImpl_forward_kernels.hpp"
#include "aidge/backend/cpu/operator/MulImpl_backward_kernels.hpp"
Aidge::Elts_t Aidge::MulImpl_cpu::getNbRequiredProtected(const Aidge::IOIndex_t /*inputIdx*/) const {
// this implementation can be in-place
......@@ -40,6 +41,7 @@ void Aidge::MulImpl_cpu::forward() {
const std::vector<std::size_t> inputDims1 = getBroadcastedDims(std::static_pointer_cast<Tensor>(mOp.getRawOutput(0))->dims(),
std::static_pointer_cast<Tensor>(mOp.getRawInput(1))->dims());
// Call kernel
kernelFunc(inputDims0,
inputDims1,
......@@ -48,3 +50,32 @@ void Aidge::MulImpl_cpu::forward() {
getCPUPtr(mOp.getRawInput(1)),
getCPUPtr(mOp.getRawOutput(0)));
}
void Aidge::MulImpl_cpu::backward() {
const Mul_Op& op_ = dynamic_cast<const Mul_Op&>(mOp);
auto in0 = op_.getInput(0);
auto in1 = op_.getInput(1);
auto in0grad = op_.getInput(0)->grad();
auto in1grad = op_.getInput(1)->grad();
auto out0grad = op_.getOutput(0)->grad();
// Find kernel function
auto kernelFunc = Registrar<MulImplBackward_cpu>::create({
out0grad->dataType(),
in0grad->dataType(),
in1grad->dataType()});
kernelFunc(/* input0Length */ in0grad->size(),
/* input1Length */ in1grad->size(),
/* grad0Length */ out0grad->size(),
/* input0Dims */ in0->dims(),
/* input1Dims */ in1->dims(),
getCPUPtr(in0),
getCPUPtr(in1),
getCPUPtr(out0grad),
getCPUPtr(in0grad),
getCPUPtr(in1grad));
}
......@@ -24,6 +24,337 @@
namespace Aidge {
TEST_CASE("[CPU/Operator] Mul Backward", "[Mul][CPU][Backward]")
{
std::shared_ptr<Node> myMul = Mul();
auto op = std::static_pointer_cast<OperatorTensor>(myMul->getOperator());
op->setDataType(DataType::Float32);
op->setBackend("cpu");
SECTION("Case 1: 2D and 1D tensors") {
const auto T0 = std::make_shared<Tensor>(Array2D<float,2,3>(
{
{
{1,2,3},{4,5,6}
}
}
));
const auto T1 = std::make_shared<Tensor>(Array1D<float,3>(
{0.1,0.2,0.3}
));
T0->setDataType(DataType::Float32);
T0->setBackend("cpu");
T1->setDataType(DataType::Float32);
T1->setBackend("cpu");
op->getOutput(0)->setGrad(std::make_shared<Tensor>(Array2D<float,2,3>({{{1.0,1.0,1.0},{1.0,1.0,1.0}}})));
op->associateInput(0,T0);
op->associateInput(1,T1);
op->forwardDims();
myMul->forward();
myMul->backward();
auto T0Grad = std::make_shared<Tensor>(Array2D<float, 2,3>({{{0.1,0.2,0.3},{0.1, 0.2, 0.3}}}));
auto T1Grad = std::make_shared<Tensor>(Array1D<float, 3>({5,7,9}));
REQUIRE(approxEq<float>(*(op->getInput(0)->grad()), *T0Grad));
REQUIRE(approxEq<float>(*(op->getInput(1)->grad()), *T1Grad));
}
SECTION("Case 2: 3D and 1D tensors") {
const auto T0 = std::make_shared<Tensor>(Array3D<float,2,2,3>(
{
{
{
{1.0, 2.0, 3.0},
{4.0, 5.0, 6.0}
},
{
{7.0, 8.0, 9.0},
{10.0, 11.0, 12.0}
}
}
}
));
const auto T1 = std::make_shared<Tensor>(Array1D<float, 3>({0.3,0.2,0.1}));
const auto newGrad = std::make_shared<Tensor>(Array3D<float,2,2,3>(
{
{
{
{1, 1, 1},
{1, 1, 1}
},
{
{1, 1, 1},
{1, 1, 1}
}
}
}
));
const auto expectedGrad0 = std::make_shared<Tensor>(Array3D<float,2,2,3>(
{
{
{
{0.3, 0.2, 0.1},
{0.3, 0.2, 0.1}
},
{
{0.3, 0.2, 0.1},
{0.3, 0.2, 0.1}
}
}
}
));
const auto expectedGrad1 = std::make_shared<Tensor>(Array1D<float,3>(
{22.0, 26.0, 30.0}
));
for(auto T: {T0, T1, newGrad, expectedGrad0, expectedGrad1})
{
T->setBackend("cpu") ;
T->setDataType(DataType::Float32);
}
op->associateInput(0, T0);
op->associateInput(1, T1);
op->getOutput(0)->setGrad(newGrad);
op->forwardDims();
myMul->backward();
REQUIRE(approxEq<float>(*(op->getInput(0)->grad()), *expectedGrad0));
REQUIRE(approxEq<float>(*(op->getInput(1)->grad()), *expectedGrad1));
}
SECTION("Case 3: 4D and 2D tensors") {
const auto T0 = std::make_shared<Tensor>(Array4D<float,2, 2, 3, 3>(
{
{
{
{
{1.0, 2.0, 3.0},
{4.0, 5.0, 6.0},
{7.0, 8.0, 9.0}
},
{
{10.0, 11.0, 12.0},
{13.0, 14.0, 15.0},
{16.0, 17.0, 18.0}
}
},
{
{
{19.0, 20.0, 21.0},
{22.0, 23.0, 24.0},
{25.0, 26.0, 27.0}
},
{
{28.0, 29.0, 30.0},
{31.0, 32.0, 33.0},
{34.0, 35.0, 36.0}
}
}
}
}
));
const auto T1 = std::make_shared<Tensor>(Array2D<float, 3,3>(
{
{
{0.5,0.3,0.1},
{0.4,0.2,0.6},
{0.7,0.8,0.9}
}
}
));
const auto newGrad = std::make_shared<Tensor>(Array4D<float,2, 2, 3, 3>(
{
{
{
{
{1.0, 1.0, 1.0},
{1.0, 1.0, 1.0},
{1.0, 1.0, 1.0}
},
{
{1.0, 1.0, 1.0},
{1.0, 1.0, 1.0},
{1.0, 1.0, 1.0}
}
},
{
{
{1.0, 1.0, 1.0},
{1.0, 1.0, 1.0},
{1.0, 1.0, 1.0}
},
{
{1.0, 1.0, 1.0},
{1.0, 1.0, 1.0},
{1.0, 1.0, 1.0}
}
}
}
}
));
const auto expectedGrad0 = std::make_shared<Tensor>(Array4D<float,2,2,3,3>(
{
{
{
{
{0.5, 0.3, 0.1},
{0.4, 0.2, 0.6},
{0.7, 0.8, 0.9}
},
{
{0.5, 0.3, 0.1},
{0.4, 0.2, 0.6},
{0.7, 0.8, 0.9}
}
},
{
{
{0.5, 0.3, 0.1},
{0.4, 0.2, 0.6},
{0.7, 0.8, 0.9}
},
{
{0.5, 0.3, 0.1},
{0.4, 0.2, 0.6},
{0.7, 0.8, 0.9}
}
}
}
}
));
const auto expectedGrad1 = std::make_shared<Tensor>(Array2D<float,3, 3>(
{
{
{58.0, 62.0, 66.0},
{70.0, 74.0, 78.0},
{82.0, 86.0, 90.0}
}
}
));
for(const auto T: {T0, T1, newGrad, expectedGrad0, expectedGrad1})
{
T->setBackend("cpu") ;
T->setDataType(DataType::Float32);
}
op->associateInput(0, T0);
op->associateInput(1, T1);
op->getOutput(0)->setGrad(newGrad);
op->forwardDims();
myMul->backward();
REQUIRE(approxEq<float>(*(op->getInput(0)->grad()), *expectedGrad0));
REQUIRE(approxEq<float>(*(op->getInput(1)->grad()), *expectedGrad1));
}
SECTION("Case 4: 3D and 2D tensors") {
const auto T0 = std::make_shared<Tensor>(Array3D<float, 2, 3, 4>(
{
{
{
{1.0, 2.0, 3.0, 4.0},
{5.0, 6.0, 7.0, 8.0},
{9.0, 10.0, 11.0, 12.0},
},
{
{13.0, 14.0, 15.0, 16.0},
{17.0, 18.0, 19.0, 20.0},
{21.0, 22.0, 23.0, 24.0},
}
}
}
));
const auto T1 = std::make_shared<Tensor>(Array2D<float, 3, 4>(
{
{
{0.1, 0.2, 0.3, 0.4},
{0.5, 0.6, 0.7, 0.8},
{0.9, 1.0, 1.1, 1.2}
}
}
));
const auto newGrad = std::make_shared<Tensor>(Array3D<float, 2,3,4>(
{
{
{
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
},
{
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
}
}
}
));
const auto expectedGrad0 = std::make_shared<Tensor>(Array3D<float,2,3,4>(
{
{
{
{0.1, 0.2, 0.3, 0.4},
{0.5, 0.6, 0.7, 0.8},
{0.9, 1.0, 1.1, 1.2}
},
{
{0.1, 0.2, 0.3, 0.4},
{0.5, 0.6, 0.7, 0.8},
{0.9, 1.0, 1.1, 1.2}
}
}
}
));
const auto expectedGrad1 = std::make_shared<Tensor>(Array2D<float,3, 4>(
{
{
{14.0, 16.0, 18.0, 20.0},
{22.0, 24.0, 26.0, 28.0},
{30.0, 32.0, 34.0, 36.0}
}
}
));
for(const auto T: {T0, T1, newGrad, expectedGrad0, expectedGrad1})
{
T->setBackend("cpu") ;
T->setDataType(DataType::Float32);
}
op->associateInput(0, T0);
op->associateInput(1, T1);
op->getOutput(0)->setGrad(newGrad);
op->forwardDims();
myMul->backward();
REQUIRE(approxEq<float>(*(op->getInput(0)->grad()), *expectedGrad0));
REQUIRE(approxEq<float>(*(op->getInput(1)->grad()), *expectedGrad1));
}
}
TEST_CASE("[cpu/operator] Mul", "[Mul][CPU]") {
constexpr std::uint16_t NBTRIALS = 10;
// Create a random number generator
......@@ -31,7 +362,7 @@ TEST_CASE("[cpu/operator] Mul", "[Mul][CPU]") {
std::mt19937 gen(rd());
std::uniform_real_distribution<float> valueDist(0.1f, 1.1f); // Random float distribution between 0 and 1
std::uniform_int_distribution<std::size_t> dimSizeDist(std::size_t(2), std::size_t(10));
std::uniform_int_distribution<std::size_t> nbDimsDist(std::size_t(1), std::size_t(5));
std::uniform_int_distribution<std::size_t> nbDimsDist(std::size_t(1), std::size_t(3));
std::uniform_int_distribution<int> boolDist(0,1);
// Create MatMul Operator
......@@ -60,6 +391,7 @@ TEST_CASE("[cpu/operator] Mul", "[Mul][CPU]") {
std::chrono::time_point<std::chrono::system_clock> end;
std::chrono::duration<double, std::micro> duration{};
SECTION("MulImpl_cpu::forward()") {
SECTION("Scalar / Scalar") {
......@@ -68,16 +400,20 @@ TEST_CASE("[cpu/operator] Mul", "[Mul][CPU]") {
}
SECTION("+1-D Tensor / +1-D Tensor - same dimensions") {
std::size_t number_of_operation = 0;
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
// generate 2 random Tensors
const std::size_t nbDims = nbDimsDist(gen);
std::vector<std::size_t> dims;
const auto nbDims = nbDimsDist(gen);
auto dims = std::vector<std::size_t>{};
for (std::size_t i = 0; i < nbDims; ++i) {
dims.push_back(dimSizeDist(gen));
}
const std::size_t nb_elements = std::accumulate(dims.cbegin(), dims.cend(), std::size_t(1), std::multiplies<std::size_t>());
const auto nb_elements = std::accumulate(dims.cbegin(), dims.cend(), std::size_t(1), std::multiplies<std::size_t>());
number_of_operation += nb_elements;
// without broadcasting
......@@ -114,67 +450,101 @@ TEST_CASE("[cpu/operator] Mul", "[Mul][CPU]") {
delete[] array0;
delete[] array1;
delete[] result;
// with broadcasting
}
std::cout << "number of elements over time spent: " << (number_of_operation / duration.count())<< std::endl;
std::cout << "total time: " << duration.count() << "μs" << std::endl;
}
SECTION("+1-D Tensor / +1-D Tensor - broadcasting") {
std::size_t number_of_operation = 0;
for (std::uint16_t trial = 0; trial < NBTRIALS; ++trial) {
// generate 2 random Tensors
// handle dimensions, replace some dimensions with '1' to get broadcasting
constexpr std::size_t nbDims = 4;
std::vector<std::size_t> dims;
for (std::size_t i = 0; i < nbDims; ++i) {
dims.push_back(dimSizeDist(gen));
std::vector<std::size_t> dimensions;
for (std::size_t i = 0; i < nbDims; ++i)
{
dimensions.push_back(dimSizeDist(gen));
}
std::vector<std::size_t> dims0 = dims;
std::vector<std::size_t> dims1 = dims;
std::vector<std::size_t> dimsOut = dims;
for (std::size_t i = 0; i < nbDims; ++i) {
if (boolDist(gen)) {
auto dims0 = dimensions;
auto dims1 = dimensions;
auto dimsOut = dimensions;
for (std::size_t i = 0; i < nbDims; ++i)
{
if (boolDist(gen))
{
dims0[i] = 1;
}
if (boolDist(gen)) {
if (boolDist(gen))
{
dims1[i] = 1;
}
dimsOut[i] = (dims0[i] == 1) ? dims1[i] : dims0[i];
}
for(auto dim : dims0)
{
Log::info("Dimension of input 0 : {}", dim);
}
for(auto dim : dims1)
{
Log::info("Dimension of input 1 : {}", dim);
}
// create arrays and fill them with random values
float* array0 = new float[dims0[0]*dims0[1]*dims0[2]*dims0[3]];
float* array1 = new float[dims1[0]*dims1[1]*dims1[2]*dims1[3]];
float* result = new float[dimsOut[0]*dimsOut[1]*dimsOut[2]*dimsOut[3]];
for (std::size_t i = 0; i < dims0[0]*dims0[1]*dims0[2]*dims0[3]; ++i) {
for (std::size_t i = 0; i < dims0[0]*dims0[1]*dims0[2]*dims0[3]; ++i)
{
array0[i] = valueDist(gen);
}
for (std::size_t i = 0; i < dims1[0]*dims1[1]*dims1[2]*dims1[3]; ++i) {
for (std::size_t i = 0; i < dims1[0]*dims1[1]*dims1[2]*dims1[3]; ++i)
{
array1[i] = valueDist(gen);
}
// compute true result
const std::size_t strides0[nbDims] = {dims0[1]*dims0[2]*dims0[3], dims0[2]*dims0[3], dims0[3], 1};
const std::size_t strides1[nbDims] = {dims1[1]*dims1[2]*dims1[3], dims1[2]*dims1[3], dims1[3], 1};
for (std::size_t a = 0; a < dimsOut[0]; ++a) {
for (std::size_t b = 0; b < dimsOut[1]; ++b) {
for (std::size_t a = 0; a < dimsOut[0]; ++a)
{
for (std::size_t b = 0; b < dimsOut[1]; ++b)
{
const std::size_t idx0_0 = strides0[0] * ((dims0[0] > 1) ? a : 0)
+ strides0[1] * ((dims0[1] > 1) ? b : 0);
const std::size_t idx1_0 = strides1[0] * ((dims1[0] > 1) ? a : 0)
+ strides1[1] * ((dims1[1] > 1) ? b : 0);
for (std::size_t c = 0; c < dimsOut[2]; ++c) {
for (std::size_t c = 0; c < dimsOut[2]; ++c)
{
const std::size_t idx_out = dimsOut[3] * (c + dimsOut[2] * (b + dimsOut[1] * a));
for (std::size_t d = 0; d < dimsOut[3]; ++d) {
for (std::size_t d = 0; d < dimsOut[3]; ++d)
{
std::size_t idx0 = idx0_0
+ strides0[2] * ((dims0[2] > 1) ? c : 0)
+ ((dims0[3] > 1) ? d : 0);
std::size_t idx1 = idx1_0
+ strides1[2] * ((dims1[2] > 1) ? c : 0)
+ ((dims1[3] > 1) ? d : 0);
result[idx_out + d] = array0[idx0] * array1[idx1];
// std::cout << "(" << idx0 << ", " << idx1 << ") -> " << array0[idx0] << " * " << array1[idx1] << " -> " << idx_out + d << std::endl;
}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment