Skip to content
Snippets Groups Projects
Commit 16776c2b authored by Houssem ROUIS's avatar Houssem ROUIS
Browse files

add Transpose operator

parent 56197a2f
No related branches found
No related tags found
2 merge requests!50version 0.2.0,!20Vit operators
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_TransposeIMPL_H_
#define AIDGE_CPU_OPERATOR_TransposeIMPL_H_
#include "aidge/backend/OperatorImpl.hpp"
#include "aidge/operator/Transpose.hpp"
#include "aidge/utils/Registrar.hpp"
#include "aidge/utils/Types.h"
#include <memory>
#include <vector>
namespace Aidge {
// class Transpose_Op;
// compute kernel registry for forward and backward
class TransposeImpl2DForward_cpu
: public Registrable<TransposeImpl2DForward_cpu, std::tuple<DataType, DataType>, void( const typename Transpose_Op<2>::Attrs& attrs, const std::vector<DimSize_t>, const std::vector<DimSize_t>,const void*, void*)> {
};
class TransposeImpl3DForward_cpu
: public Registrable<TransposeImpl3DForward_cpu, std::tuple<DataType, DataType>, void( const typename Transpose_Op<3>::Attrs& attrs, const std::vector<DimSize_t>, const std::vector<DimSize_t>,const void*, void*)> {
};
class TransposeImpl4DForward_cpu
: public Registrable<TransposeImpl4DForward_cpu, std::tuple<DataType, DataType>, void( const typename Transpose_Op<4>::Attrs& attrs, const std::vector<DimSize_t>, const std::vector<DimSize_t>,const void*, void*)> {
};
class TransposeImpl2DBackward_cpu
: public Registrable<TransposeImpl2DBackward_cpu, std::tuple<DataType, DataType>, void( const typename Transpose_Op<2>::Attrs& attrs, const std::vector<DimSize_t>, const std::vector<DimSize_t>,const void*, void*)> {
};
class TransposeImpl3DBackward_cpu
: public Registrable<TransposeImpl3DBackward_cpu, std::tuple<DataType, DataType>, void( const typename Transpose_Op<3>::Attrs& attrs, const std::vector<DimSize_t>, const std::vector<DimSize_t>,const void*, void*)> {
};
class TransposeImpl4DBackward_cpu
: public Registrable<TransposeImpl4DBackward_cpu, std::tuple<DataType, DataType>, void( const typename Transpose_Op<4>::Attrs& attrs, const std::vector<DimSize_t>, const std::vector<DimSize_t>,const void*, void*)> {
};
class TransposeImpl2D_cpu : public OperatorImpl {
public:
TransposeImpl2D_cpu(const Transpose_Op<2>& op) : OperatorImpl(op) {}
static std::unique_ptr<TransposeImpl2D_cpu> create(const Transpose_Op<2>& op) {
return std::make_unique<TransposeImpl2D_cpu>(op);
}
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
void forward() override;
};
class TransposeImpl3D_cpu : public OperatorImpl {
public:
TransposeImpl3D_cpu(const Transpose_Op<3>& op) : OperatorImpl(op) {}
static std::unique_ptr<TransposeImpl3D_cpu> create(const Transpose_Op<3>& op) {
return std::make_unique<TransposeImpl3D_cpu>(op);
}
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
void forward() override;
};
class TransposeImpl4D_cpu : public OperatorImpl {
public:
TransposeImpl4D_cpu(const Transpose_Op<4>& op) : OperatorImpl(op) {}
static std::unique_ptr<TransposeImpl4D_cpu> create(const Transpose_Op<4>& op) {
return std::make_unique<TransposeImpl4D_cpu>(op);
}
NbElts_t getNbRequiredProtected(const IOIndex_t inputIdx) const override final;
void forward() override;
};
namespace {
static Registrar<Transpose_Op<2>> registrarTransposeImpl2D_cpu("cpu", Aidge::TransposeImpl2D_cpu::create);
static Registrar<Transpose_Op<3>> registrarTransposeImpl3D_cpu("cpu", Aidge::TransposeImpl3D_cpu::create);
static Registrar<Transpose_Op<4>> registrarTransposeImpl4D_cpu("cpu", Aidge::TransposeImpl4D_cpu::create);
}
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_TransposeIMPL_H_ */
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#ifndef AIDGE_CPU_OPERATOR_TRANSPOSEIMPL_FORWARD_KERNEL_H_
#define AIDGE_CPU_OPERATOR_TRANSPOSEIMPL_FORWARD_KERNEL_H_
#include "aidge/utils/Registrar.hpp"
#include <cstddef>
#include <cmath>
#include "aidge/data/Data.hpp"
#include "aidge/utils/Types.h"
#include "aidge/backend/cpu/operator/TransposeImpl.hpp"
namespace Aidge {
template <class I, class O, DimSize_t DIM>
void TransposeImpl_cpu_forward_kernel( const typename Transpose_Op<DIM>::Attrs& attrs, const std::vector<DimSize_t> inputDims, const std::vector<DimSize_t> outputDims, const void* input_, void* output_)
{
O* output = static_cast<O*>(output_);
const I* input = static_cast<const I*>(input_);
// Compute total number of elements in the input array
size_t totalElements = 1;
for (size_t dimSize : inputDims) {
totalElements *= dimSize;
}
std::vector<size_t> indices(outputDims.size(), 0);
for (size_t i = 0; i < totalElements; ++i) {
size_t idx = 0;
// Permute indices based on OutputDimsOrder attr
std::vector<size_t> permutedIndices(DIM);
for (size_t j = 0; j < DIM; ++j) {
permutedIndices[j] = indices[std::get<0>(attrs)[j]];
}
// Compute the position of the next element to copy from input
for (size_t j = 0; j < DIM; ++j) {
size_t currsize = 1;
for(size_t k=j+1; k< DIM; ++k)
currsize*= inputDims[k];
idx += permutedIndices[j] * currsize;
}
// Copy the value in output
output[i] = input[idx];
// Update indices for the next iteration
for (int j = DIM - 1; j >= 0; --j) {
if (indices[j] < outputDims[j] - 1) {
indices[j]++;
break;
} else {
indices[j] = 0;
}
}
}
}
namespace {
// DIM = 2
static Registrar<TransposeImpl2DForward_cpu> registrarTransposeImpl2DForward_cpu_Float32(
{DataType::Float32, DataType::Float32}, Aidge::TransposeImpl_cpu_forward_kernel<float, float, 2>);
static Registrar<TransposeImpl2DForward_cpu> registrarTransposeImpl2DForward_cpu_Int32(
{DataType::Int32, DataType::Int32}, Aidge::TransposeImpl_cpu_forward_kernel<int, int, 2>);
static Registrar<TransposeImpl2DForward_cpu> registrarTransposeImpl2DForward_cpu_Float64(
{DataType::Float64, DataType::Float64}, Aidge::TransposeImpl_cpu_forward_kernel<double, double, 2>);
// DIM = 3
static Registrar<TransposeImpl3DForward_cpu> registrarTransposeImpl3DForward_cpu_Float32(
{DataType::Float32, DataType::Float32}, Aidge::TransposeImpl_cpu_forward_kernel<float, float, 3>);
static Registrar<TransposeImpl3DForward_cpu> registrarTransposeImpl3DForward_cpu_Int32(
{DataType::Int32, DataType::Int32}, Aidge::TransposeImpl_cpu_forward_kernel<int, int, 3>);
static Registrar<TransposeImpl3DForward_cpu> registrarTransposeImpl3DForward_cpu_Float64(
{DataType::Float64, DataType::Float64}, Aidge::TransposeImpl_cpu_forward_kernel<double, double, 3>);
// DIM = 4
static Registrar<TransposeImpl4DForward_cpu> registrarTransposeImpl4DForward_cpu_Float32(
{DataType::Float32, DataType::Float32}, Aidge::TransposeImpl_cpu_forward_kernel<float, float, 4>);
static Registrar<TransposeImpl4DForward_cpu> registrarTransposeImpl4DForward_cpu_Int32(
{DataType::Int32, DataType::Int32}, Aidge::TransposeImpl_cpu_forward_kernel<int, int, 4>);
static Registrar<TransposeImpl4DForward_cpu> registrarTransposeImpl4DForward_cpu_Float64(
{DataType::Float64, DataType::Float64}, Aidge::TransposeImpl_cpu_forward_kernel<double, double, 4>);
} // namespace
} // namespace Aidge
#endif /* AIDGE_CPU_OPERATOR_TRANSPOSEIMPL_FORWARD_KERNEL_H_ */
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <cassert>
#include <chrono> // std::chrono::milliseconds
#include <numeric> // std::accumulate
#include <thread> // std::this_thread::sleep_for
#include <vector>
#include "aidge/utils/Types.h"
#include "aidge/operator/Transpose.hpp"
#include "aidge/backend/cpu/operator/TransposeImpl.hpp"
#include "aidge/backend/cpu/operator/TransposeImpl_forward_kernels.hpp"
Aidge::NbElts_t Aidge::TransposeImpl2D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const {
// this implementation can be in-place
return 0;
}
Aidge::NbElts_t Aidge::TransposeImpl3D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const {
// this implementation can be in-place
return 0;
}
Aidge::NbElts_t Aidge::TransposeImpl4D_cpu::getNbRequiredProtected(IOIndex_t /*inputIdx*/) const {
// this implementation can be in-place
return 0;
}
void Aidge::TransposeImpl2D_cpu::forward() {
assert(mOp.getInput(0) && "missing input #0");
assert(mOp.getInput(0)->nbDims() == 2 && "input #0 must have the same size as axes attributes (2)");
// Find the correct kernel type
auto kernelFunc =
Registrar<TransposeImpl2DForward_cpu>::create({mOp.getInput(0)->dataType(), mOp.getOutput(0)->dataType()});
// auto attr = dynamic_cast<const Transpose_Op<2>&>(mOp).getStaticAttributes();
// std::vector<DimIdx_t> outDimsOrder;
// outDimsOrder.reserve(std::get<0>(attr).size()); // Reserve space for the new vector
// std::transform(std::get<0>(attr).begin(), std::get<0>(attr).end(), std::back_inserter(outDimsOrder),
// [](int intValue) { return static_cast<DimIdx_t>(intValue); });
// Call kernel
kernelFunc(dynamic_cast<const Transpose_Op<2>&>(mOp).getStaticAttributes(),
mOp.getInput(0)->dims(),
mOp.getOutput(0)->dims(),
mOp.getInput(0)->getImpl()->rawPtr(),
mOp.getOutput(0)->getImpl()->rawPtr());
}
void Aidge::TransposeImpl3D_cpu::forward() {
assert(mOp.getInput(0) && "missing input #0");
assert(mOp.getInput(0)->nbDims() == 3 && "input #0 must have the same size as axes attributes (3)");
// Find the correct kernel type
auto kernelFunc =
Registrar<TransposeImpl3DForward_cpu>::create({mOp.getInput(0)->dataType(), mOp.getOutput(0)->dataType()});
// Call kernel
kernelFunc(dynamic_cast<const Transpose_Op<3>&>(mOp).getStaticAttributes(),
mOp.getInput(0)->dims(),
mOp.getOutput(0)->dims(),
mOp.getInput(0)->getImpl()->rawPtr(),
mOp.getOutput(0)->getImpl()->rawPtr());
}
void Aidge::TransposeImpl4D_cpu::forward() {
assert(mOp.getInput(0) && "missing input #0");
assert(mOp.getInput(0)->nbDims() == 4 && "input #0 must have the same size as axes attributes (4)");
// Find the correct kernel type
auto kernelFunc =
Registrar<TransposeImpl4DForward_cpu>::create({mOp.getInput(0)->dataType(), mOp.getOutput(0)->dataType()});
// Call kernel
kernelFunc(dynamic_cast<const Transpose_Op<4>&>(mOp).getStaticAttributes(),
mOp.getInput(0)->dims(),
mOp.getOutput(0)->dims(),
mOp.getInput(0)->getImpl()->rawPtr(),
mOp.getOutput(0)->getImpl()->rawPtr());
}
/********************************************************************************
* Copyright (c) 2023 CEA-List
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* SPDX-License-Identifier: EPL-2.0
*
********************************************************************************/
#include <catch2/catch_test_macros.hpp>
#include <memory>
#include "aidge/data/Tensor.hpp"
#include "aidge/operator/Transpose.hpp"
#include "aidge/backend/cpu.hpp"
#include <iostream>
using namespace Aidge;
TEST_CASE("[cpu/operator] Transpose(forward)") {
std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array3D<float,2,3,4> {
{
{{0.42507452, 0.11244237, 0.43243718, 0.62354952},
{0.90250170, 0.48719984, 0.45781207, 0.92536664},
{0.06348717, 0.91678733, 0.64452291, 0.00484818}},
{{0.66873497, 0.99508536, 0.55714869, 0.84887981},
{0.41666120, 0.92365038, 0.80034822, 0.38721532},
{0.52037925, 0.53937608, 0.66380072, 0.36330253}}
}
});
std::shared_ptr<Tensor> output = std::make_shared<Tensor>(Array3D<float,2,4,3> {
{
{{0.42507452, 0.90250170, 0.06348717},
{0.11244237, 0.48719984, 0.91678733},
{0.43243718, 0.45781207, 0.64452291},
{0.62354952, 0.92536664, 0.00484818}},
{{0.66873497, 0.41666120, 0.52037925},
{0.99508536, 0.92365038, 0.53937608},
{0.55714869, 0.80034822, 0.66380072},
{0.84887981, 0.38721532, 0.36330253}}
}
});
std::shared_ptr<Node> myTranspose = Transpose<3>(std::array<DimSize_t,3>{{0,2,1}});
myTranspose->getOperator()->setDatatype(DataType::Float32);
myTranspose->getOperator()->setBackend("cpu");
myTranspose->getOperator()->associateInput(0,input);
myTranspose->getOperator()->computeOutputDims();
myTranspose->forward();
// float* resPtr = static_cast<float*>(myTranspose->getOperator()->getOutput(0)->getImpl()->rawPtr());
// float* expectedPtr = static_cast<float*>(output->getImpl()->rawPtr());
// for (std::size_t i = 0; i< 24; ++i) {
// std::cout << "Res " << resPtr[i] << " , expected : " << expectedPtr[i] << std::endl;
// REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001);
// }
REQUIRE(*(myTranspose->getOperator()->getOutput(0)) == *output);
}
// TEST_CASE("[cpu/operator] Transpose(forward)") {
// std::shared_ptr<Tensor> input = std::make_shared<Tensor>(Array3D<float,2,3,4> {
// {
// {{0.0, 0.1, 0.2, 0.3},
// {0.4, 0.5, 0.6, 0.7},
// {0.8, 0.9, 1.0, 1.1}},
// {{1.2, 1.3, 1.4, 1.5},
// {1.6, 1.7, 1.8, 1.9},
// {2.0, 2.1, 2.2, 2.3}}
// }
// });
// std::shared_ptr<Tensor> output = std::make_shared<Tensor>(Array3D<float,2,4,3> {
// {
// {{0.0, 0.4, 0.8},
// {0.1, 0.5, 0.9},
// {0.2, 0.6, 1.0},
// {0.3, 0.7, 1.1}},
// {{1.2, 1.6, 2.0},
// {1.3, 1.7, 2.1},
// {1.4, 1.8, 2.2},
// {1.5, 1.9, 2.3}}
// }
// });
// std::shared_ptr<Node> myTranspose = Transpose<3>(std::array<DimSize_t,3>{{0,2,1}});
// myTranspose->getOperator()->setDatatype(DataType::Float32);
// myTranspose->getOperator()->setBackend("cpu");
// myTranspose->getOperator()->associateInput(0,input);
// myTranspose->getOperator()->computeOutputDims();
// myTranspose->forward();
// float* resPtr = static_cast<float*>(myTranspose->getOperator()->getOutput(0)->getImpl()->rawPtr());
// float* expectedPtr = static_cast<float*>(output->getImpl()->rawPtr());
// for (std::size_t i = 0; i< 24; ++i) {
// std::cout << "Res " << resPtr[i] << " , expected : " << expectedPtr[i] << std::endl;
// REQUIRE(std::abs(resPtr[i]-expectedPtr[i]) < 0.00001);
// }
// // REQUIRE(*(myTranspose->getOperator()->getOutput(0)) == *output);
// }
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment